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Discrete Fourier transform and fractional equations
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In the fractional calculus [4] we have several ways to introduce the concept of fractional
derivative [2]. Contharteze et al. [3] discuss a fractional version of the fundamental theorem
of calculus associated with the derivative in the Caputo sense and Riemann-Liouville sense.

We use the discrete Fourier transform method [1], which is one of the most basic
methods in signal analysis, to implement an algorithm to express the solution for the
diffusion of neutrons in a material medium, described through a fractional differential
equation [6].

In a recent paper [5], analytical and numerical methods have been proposed for solving
fractional differential equations. We present a numerical approximation for the inverse
Fourier transform of the function

Φ̂(ω, t) = Eα(−νωβtα),

with respect to the variable ω at the point t > 0, where α, β, ν > 0, which appears in
the analytical solution of many fractional differential equations, using the discrete Fourier
transform. Eα(·) is the classical Mittag-Leffler function. The inverse Fourier transform of
Φ̂(ω, t) is given by

Φ(x, t) =
1

π

∫ ∞
0

Eα(−νωβtα)cos(ωx)dω. (1)

Fixed a t0, there exists an ωc so that Φ̂(ωc, t0) ∼= 0 for |ω| > ωc.
We redefine Φ̂(ω, t0) as follows

Φ̂(ω, t0) = Φ̂(ω, t0), if 0 ≤ ω ≤ ωc, , and Φ̂(ω, t0) = 0, , if ω > ωc.

In equation (1), if ∆ω =
ωc
n

and ωj = j∆ω, the function Φ(x, t0) can be approximated as

Φ(x, t0) ∼=
1

π

∫ ωc

0
Φ̂(ω, t0)cos(ωx)dω ∼=

∆ω

π

n∑
j=0

Φ̂ (ωj , t0) cos (ωj x) . (2)
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We apply the numerical approximation, as described above, to obtain the solution of
the so-called fractional slowing-down of neutrons [6], satisfying

CDα
0+u(x, t) = −ν (−∆)β/2 u(x, t) + F(x)δ(t),

u(x, 0+) = F(x), u(x, 0−) = 0,
lim
|x|→∞

ut(x, t) = 0,
(3)

where 0 < α ≤ 1, 1 < β ≤ 2, ν > 0, CDα
0+ is the Caputo left-sided fractional derivative

and (−∆)β/2 = Dβ is the Riesz fractional derivative [4]. Particular cases for u(x, t) are
presented graphically in Fig. 1, below.
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Figure 1: Graphic for u(x, 1) when F(x) = δ(x).
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