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Abstract.

Temperature differences data sets obtained from a telescope can be transformed into a
Cosmic Microwave Background (CMB) map. Our formulation for addressing the CMB
mapping is based on an inverse problem methodology minimizing an optimization problem.
Noisy synthetic date representing the BEAST experiment 30-day mission were used to test
our approach. The computed CMB maps) are similar to those obtained by the bin average
method. Our approach produced better results in similar processing time.
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1 Introduction

Cosmic Microwave Background radiation (CMB) maps are important tools to compute
temperature power spectra, allowing to compute cosmological parameters used to check
the standard cosmological model [17]. CMB maps are constructed by measuring noisy sky
temperatures differences in microwave frequencies, estimating the corresponding noiseless
temperatures and plotting the temperature anisotropies [12]. Such temperature anisotropy
is the key to explain the Universe structure on large scale [9]. This was done, for instance,
by the Cosmic Background Explorer satellite (COBE) team, measuring the CBM spectrum
[13]. The CMB map making process consists in reducing a large time-ordered data set of
temperatures acquired by a telescope into a map of sky temperature anisotropies of the
observed region of the sky [2].
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A pointing matrix correlates the temperature measurements to the observed regions
in the sky, being defined by the pointing strategy of the instrument. The map-making
process constitutes the inverse problem of estimating temperatures anisotropy values from
temporal ordered data (TOD) of noisy temperature measurements. The COBE team de-
veloped the standard inverse method based upon a least squares approach, which leads to
a system of linear equations [19]. A very common approach to reduce the high computati-
onal complexity of this method is the bin average method, that averages the temperatures
successively acquired for each pixel.

Here, the estimation of the CMB maps is computed as an inverse problem. The inverse
problem is formulated as an optimization problem. Two metaheuristics were employed:
genetic algorithm and simulated annealing. Both techniques, implicit inverse problem and
bin average, are evaluated with simulated data from the Background Emission Anisotropy
Scanning Telescope (BEAST) experiment [14,16].

2 Making CMB Maps through Inverse Problem Approach

The CMB map-making process considered here is formulated as an implicit inverse
problem. The cost function is the square difference between the set of the estimated
temperatures (Te) and the set of measured temperatures (Td) of the sky:

F k =
n∑
i=1

m∑
j=1

[
T kei − Tdij

]2
. (1)

In this inverse formulation, the cause is the set of temperature field Te and the effect is
the set of measured temperatures (Td). The square norm between estimated and observed
temperatures is expressed by pixelization scheme. Since the measured temperatures are
independent for each pixel, each temperature is independently estimated The estimated
temperature Te for the BEAST experiment is computed considering a pointing matrix
expressed by: Pij = δP (i,j) (Kroeneker delta function).

2.1 Solving the Optimization Problem by a Genetic Algorithm

Genetic Algorithms (GA) are stochastic search methods based on a population evolu-
tion under natural selection. Each individual has its particular genotype and is associated
to a candidate solution. New individuals in the next generation are generated using ope-
rators for selection, crossover, and mutation. Particularly, real-coded GA’s have been
employed in numerical optimization with good results [15].

Our individuals are sets of temperatures, coded by real numbers, being each gene asso-
ciated to a particular pixel temperature. A standard GA [7] was implemented. Selection
is randomly performed by means of a roulette wheel. Single point crossover is adopted and
individual genes can undergo mutation with a probability of 1%. A second GA (denoted
as Boltzmann) was also implemented using the Boltzmann distribution to evaluate the
probability of selection for each individual, in place of the uniform distribution of the ca-
nonical GA. In addition, it employs a two-point crossover, and mutation with a probability
of 0.5% applied only to genes that did not undergo crossover.
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2.2 Solving the Optimization Problem by Simulated Annealing

Simulate Annealing (SA) is a metaheuristic for optimization problems [11]. The SA
algorithm associates an amount of energy E to each possible state S of the system, asso-
ciated to a point of the search space of the problem. The energy is calculated according
to the specific optimization goal of the problem. The algorithm tries to reach a state of
minimum energy energy = objective function). The SA starts at an arbitrary state and a
random new state is addressed at every iteration step, according to a certain probability.
This probability is a function of the energy difference between the two states and a global
step-dependent parameter defined as the temperature TSA of the system. If the energy of
the new state is lower than the previous value, the transition to the new state is accepted.
If it is higher, it might be accepted or not, according to a random number that is compared
to the value p of a probability distribution function (PDF) that depends on the SA tempe-
rature. If the random number is greater than p, the new state is accepted. The standard
SA adopts the Boltzmann probability distribution function and the annealing schedule is
logarithmic: on the iteration step w, the temperature is given by Tw = T 0/ log(w). The
value of p is given by (below, kB is the Boltzmann constant):

p = exp [−∆E/(kBTSA)] . (2)

The scheme known as Fast Simulated Annealing (FSA) employs the Cauchy-Lorentz dis-
tribution [18], while the Adaptive Simulated Annealing (ASA) employs a Gaussian distri-
bution [10]. Here, the FSA adopts a linear annealing schedule (Tw = T 0/w), while ASA
employs: Tw = T 0 exp(−cww1/D) [10], where cw is a constant, and D is the total number
of parameters. SA algorithms may be improved by including a re-annealing phase. This
phase occurs when the evaluation of the objective function remains unchanged for a chosen
number of iterations. As the algorithm stabilizes, i.e. converges to an optimal solution, a
perturbation is applied to the solution, yielding a new solution T ηe .

A new scheme to calculate the perturbed solution for the re-annealing is proposed, em-
ploying average/mean absolute deviation α of the last candidate solution that is calculated
from the mean absolute deviation of all its n pixels, as follows [20]:

α =
1

n

n∑
i=1

|Tei − T̄i| , where: T̄i = 〈Ti〉i . (3)

The mean temperature of the measurements is denoted by Ti , and Tei represents the
value of the last candidate solution, both for pixel i. The perturbed solution T ηe then uses
this mean absolute deviation α as a perturbation factor to all the temperatures of this
solution. This factor is weighted by an empirical factor ξ(= 0.4) for all the n pixels, as
follows:

T ηei = Tei (1− αξ) . (4)

3 Results with Synthetic Observations

Simulated observation data emulates a 30-day mission of the BEAST experiment. A
full sky map was created using the SYNFAST routine of the HEALPIX package [8]. A
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smaller 8000- pixel patch of this sky map that corresponds to a particular one-hour daily
acquisition of the BEAST experiment was selected for the numerical tests, and corrupted
with white/Gaussian noise in a way to obtain a 0.1 signal-to-noise ratio. Each one of the
simulated TOD series is composed by 20,000 temperature values for each pixel.

Results evaluation is performed by means of the Pearson correlation coefficient ρ and
the mean absolute deviation α, both taken between the exact and the estimated maps.
Reference values are calculated from the bin average. One-hour sets of data are pixelwise
averaged, instead of performing the average of all measurements at a time. Next, the
hourly averages are averaged for each week and, finally, the week averages are averaged
for an entire year. The resulting vector is a CMB map. These averages must be weighted
by the standard deviation of the m measurements, for each pixel of a particular TOD.

3.1 Inverse solution by Genetic Algorithm

Inverse solution computed using GAs was obtained with 100 individuals in the po-
pulation, and each individual was composed by 8,000 genes, one per pixel. Each gene is
real coded in such a way that allows a range 0f -999 µK to 999 µK in the temperature
anisotropy. Figure 1 shows the results for the three types of GAs: the canonical, the
global Boltzmann, and the island Boltzmann. The better performance was obtained with
the global Boltzmann GA. Although the global Boltzmann GA presented the best quality
map among the GAs, this quality (evaluated by the Pearson correlation coefficient ρ) was
worse than the map generated by the bin average method (reference), and the GA execu-
tion time was significantly higher (CPU-time for global Boltzmann GA = 1021 min, while
CPU-time for bin average = 110 min).

Figura 1: Convergence of the parallel GAs: objective function vs number of iterations.
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3.2 Inverse Solution by Simulated Annealing

Some SA with different PDFs (uniform, Boltzmann, and Cauchy-Lorentz) were tested
for map making The convergence of these solutions is shown in Figure 2. The quality of
these solutions is shown in the first three lines of Table 1. It can be noted that any SA
yielded a better solution than the bin average method (ρ = 0.999 for SA algorithms, and
ρ = 0.995 for bin average approach). However, the corresponding parallel processing times
were about 8 times greater than the sequential time of the bin average method. The best
SA, using the Cauchy-Lorentz PDF, was then adopted for further study (re-annealing).

Figura 2: Convergence for SA implementations: objective function vs number of iterations.

Re-annealing approach was applied to the Cauchy-Lorentz SA with sampled initial
guess (it is is employed if the value of the objective function did not decrease after 10
iterations), obtaining the the best quality solution obtained by SA implementations.

Tabela 1: Performance of the SA implementations and the bin average method: mean devia-

tion (α), Pearson correlation coefficient (ρ), final objective function value (Fend), total number of

evaluations of this function (Nend), and minutes of processing time (∆t).

Process SA Algorihtm α ρ Fend Nend ∆t

PDF Uniform 0.290 0.999 19.47 1511 799
PDF Boltzmann 0.285 0.999 18.51 1514 801
PDF Cauchy-Lorentz 0.250 0.999 15.48 1497 792
Re-anneling Cauchy-Lorentz 0.200 0.999 10.05 522 122
Bin average — 0.290 0.995 — — 110
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4 Final Remarks

A scheme for making Cosmic Microwave Background (CMB) maps is addressed based
on inverse problem approach. The associated optimization problem is solved by using
two metaheuriscs: Genetic Algorithm and Simulated Annealing. A comparison between
the inverse solutions and the bin average solution is carried out. Noisy simulated data
corresponding to the BEAST experiment were employed. The genetic algorithms pre-
sented a worse performance than bin average. All results with SA were better than bin
average. The best result was obtained with re-annealing applied on Cauchy-Lorentz SA
(Fast Simulated Annealing) with sampled initial guess.
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