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Abstract. We are interested here in the application of ∞-generalized Fibonacci sequences
(∞-GFS for short), to study some properties of Bernoulli and Genocchi numbers and their
related classical numbers and polynomials. That is, properties of this class of sequences,
allows us to derive new recursive relations for generating Bernoulli and Genocchi numbers,
and their related polynomials.
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1 Introduction

The ∞-generalized Fibonacci sequence has been introduced and studied in [4]. Their
properties are also studied in [1], [2]. Particularly, their combinatorial properties are
exhibited in [6]. The preceding connection between the∞-generalized Fibonacci sequence
and analytic and holomorphic functions, has been considered in [2].

Let {vn}n∈Z be an ∞-generalized Fibonacci sequence, whose initial values are given
by v0 = 1 and v−j = 0 for all j ≥ 1, which is defined by

vn+1 =
∞∑
j=0

ajvn−j =
n∑

j=0

ajvn−j . (1)

The associated generating function is given by

f(z) =

∞∑
n=0

vnz
n =

1

Q(z)
,

where Q(z) is given by

Q(z) = 1−
∞∑
j=0

ajz
j+1, (2)
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(for more details see [4], [5]). Conversely, let Q(z) be a complex function which is analytic
in open disk D(0;R). Suppose that Q takes the following power series form in D(0;R),

Q(z) = 1−
∞∑
j=0

ajz
j+1.

Since Q(0) = 1 6= 0, f(z) = 1/Q(z) has a Taylor expansion in a certain disk centered at
0, which is of the form

f(z) =
∞∑
n=0

vnz
n. (3)

The identity Q(z)f(z) = 1 implies that we have

vn+1 =
∞∑
j=0

ajvn−j ,

for all n ≥ 0, where v0 = 1 and v−j = 0 for all j ≥ 1. Hence, {vn}n∈Z is an ∞-generalized
Fibonacci sequence, whose initial values are given by v0 = 1 and v−j = 0 for all j ≥ 1.

1.1 Truncated ∞-GFS and Bernoulli numbers

The class of Bernoulli numbers {Bn}n≥0 is defined by their associated exponential
generating functions as follows

t

et − 1
=

+∞∑
n=0

Bn
tn

n!
. (4)

The left side of (4) can be written as follows

t

et − 1
=

1

Q(t)
, where Q(t) = 1−

+∞∑
n=0

ant
n+1, (5)

with an = − 1

(n+ 2)!
. Using expressions (3)-(1), we derive the following property.

Proposition 1.1. The Bernoulli numbers are expressed in terms of an ∞-GFS as follows

Bn = n!× vn, (6)

where {vn}n∈Z is an ∞-GFS, whose coefficients are an = − 1

(n+ 2)!
(n ≥ 0) and initial

values are v0 = 1 and v−j = 0 for all j ≥ 1.

Expressions (1) and (6), show that the sequence {Bn}n≥0 can be also computed with
the aid of the following recursive relation of infinite order

Bn+1 = (n+ 1)a0Bn + n(n+ 1)a1Bn−1 + · · ·+ (n+ 1)!

1!
an−1B1 +

(n+ 1)!

0!
anB0. (7)
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Proposition (1.1) shows that the sequence of Bernoulli numbers {Bn}n≥0 can computed
using the linear recursive relation of infinite order (1). In other words, Proposition 1.1 and
expression (7), offer a new algorithm for computing recursively the Bernoulli numbers.

On the other hands, starting from the combinatoric aspect of the ∞-GFS, we can also
derive a combinatoric expression of the the sequence of Bernoulli numbers. More precisely,
Proposition 1.1 and Proposition 3.7 of [2], allow us to obtain the following proposition.

Proposition 1.1. The Bernoulli numbers are expressed in terms of the combinatoric
expression of an ∞-GFS as follows

Bn = n!× vn = n!× ρ(n, 0), (8)

where ρ(n, 0) is the combinatoric expression of the ∞-GFS {vn}n∈Z, whose coefficients are

an = − 1

(n+ 2)!
(n ≥ 0) and initial values are v0 = 1 and v−j = 0 for all j ≥ 1, given by

ρ(0, 0) = 1 and

ρ(n, 0) =
∑

k0+2k1+···+nkn−1=n

(k0 + k1 + · · ·+ kn−1)!

k0!k1! · · · kn−1!
ak00 a

k1
1 · · · a

kn−1

n−1 , (9)

for all n ≥ 1.

In the best of our knowledge the combinatoric expression (8)-(9) of the Bernoulli
numbers are new.

It is well known that there exist a closed connection between Bernoulli numbers and
other important classes of classical numbers such as Genocchi numbers and Euler numbers.
Therefore, Propositions 1.1 and 2.1 can also offer a new process for computing these classes
of numbers, with the aid of the linear recursive process of order infinite issued from the
∞-GFS properties.

1.2 Truncated ∞-GFS and Genocchi numbers

The class of Genocchi numbers {Gn}n≥0 is defined by the following generating functi-
ons,

2t

et + 1
=

+∞∑
n=0

Gn
tn

n!
. (10)

The left side of (10) can be written as follows

2t

et + 1
=

1

Q(t)
, where Q(t) = 1−

+∞∑
n=0

ant
n+1. (11)

with an = − 1

(n+ 1)!× 2
. Using expressions (3)-(1), we derive the following property.
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Proposition 1.2. The Genocchi numbers are expressed in terms of an ∞-GFS as follows

Gn = n!× wn−1, for n ≥ 1 (12)

where {wn}n∈Z is an ∞-GFS, whose coefficients are an = − 1

(n+ 1)!× 2
(n ≥ 0) and

initial values are w0 = 1 and w−j = 0 for all j ≥ 1.

Moreover, linear recursive relation of infinite order (1) and expression (12), show that

wn =
Gn+1

(n+ 1)!
(for n ≥ 1). Therefore, a simple computation implies that the sequence of

Genocchi numbers, satisfies the following recursive relation of infinite order,

Gn+1 = (n+ 1)na0Gn−1 + (n+ 1)n(n− 1)a1Gn−2 + · · ·+ (n+ 1)!an−1G0, (13)

for every n ≥ 0.

Proposition (1.2) and expression (13) show that the sequence of Genocchi numbers
{Gn}n≥0 can be computed with the aid of some recursive relations, issued from the linear
recursive relation of infinite order (1). In other words, Proposition 1.2 and expression (13),
offer a new algorithm for computing recursively the Genocchi numbers.

Moreover, the combinatoric aspect of the ∞-GFS, can be used for deriving the combi-
natoric expression of the the sequence of Genocchi numbers. Indeed, Proposition 1.2 and
Proposition 3.7 of [2] allow us to obtain the following proposition.

Proposition 1.3. The Genocchi numbers are expressed in terms of the combinatoric
expression of an ∞-GFS as follows

Gn = n!× wn−1 = n!× ρ(n− 1, 0), for n ≥ 1 (14)

where ρ(n, 0) is the combinatoric expression of the ∞-GFS {wn}n∈Z, whose coefficients

are an = − 1

(n+ 1)!× 2
(n ≥ 0) and initial values are w0 = 1 and w−j = 0 for all j ≥ 1,

given by ρ(0, 0) = 1 and (9), for all n ≥ 1.

It seems for us that the combinatoric expression (14) of the Genocchi numbers is not
known in the literature.

If we set F (t) =
2t

et + 1
, a simple computation shows that,

F (−t) = −2t+ F (t). (15)

Therefore, we have

G0 = 0, G1 = w0 = 1 G2n+1 = 0 for n ≥ 1 and G2n = (2n)!w2n−1, for n ≥ 1, (16)

where {vn}n≥0 is the ∞-GFS defined by (1). Therefore, expressions (15)-(16) allow us to
see that the recursive relation (13), can be reduced to the following

G2n+2 =

n−1∑
j=0

a2j+1
(2n+ 2)!

[2(n− j)]!
G2(n−j) + (2n+ 2)!a2nG1. (17)

DOI: 10.5540/03.2018.006.02.0436                                                                      010436-4                                                                           © 2018 SBMAC

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 6, n. 2, 2018.



5

There exists a closed connection between Genocchi numbers and other important clas-
ses of classical numbers such as Bernoulli numbers and Euler numbers. Therefore, Pro-
positions 1.2 and 1.3 can also offer a new process for computing these classes of numbers,
with the aid of the linear recursive process of order infinite issued from the ∞-GFS pro-
perties. Indeed, consider {Bn}n≥0 be the sequence of Bernoulli numbers and {En}n≥0 the
sequence of Euler numbers. It is well known in the literature that

G2n = 2(1− 22n)B2n (Genocchi’s Theorem) and G2n = 2nE2n−1,

Thus, from expression (14) we derive the following proposition.

Proposition 1.4. Consider {Gn}n≥0, {Bn}n≥0 and {En}n≥0 the sequence of Genocchi,
Bernoulli and Euler numbers (respectively). Then, we have

B2n =
(2n)!

2(1− 22n)
w2n−1 and E2n−1 =

(2n)!

2n
w2n−1 for n ≥ 1. (18)

where {wn}n∈Zis the ∞-GFS, whose coefficients are an = − 1

(n+ 1)!× 2
(n ≥ 0) and

initial values are w0 = 1 and w−j = 0 for all j ≥ 1.

2 Truncated ∞-GFS and Bernoulli polynomials

In the same way did with Bernoulli and Genocchi numbers, is done to the Bernoulli
and Genocchi polynomials and Bernoulli and Genocchi polynomials higher order, but by
lack of space we omitted some results.

The sequence of Bernoulli polynomials {Bn(x)}n≥0 can be defined in the literature by
various ways. For reason of convenience, we consider the following convenient one based
on the notion of generating function,

F (t, x) =
tetx

et − 1
=

+∞∑
n=0

Bn(x)
tn

n!
. (19)

From (8)-(19), we show easily that Bn = Bn(0), for every n ≥ 0.

Since etx =
+∞∑
n=0

xn

n!
tn, expressions (3), (4) and (8)-(9) allow us to derive that

F (t, x) =

+∞∑
n=0

Hn(x)tn,

where

Hn(x) =
∑

k+p=n

vk
xp

p!
=

n∑
s=0

vn−s
s!

xs =
n∑

k=0

ρ(n− k, 0)

k!
xk. (20)

Therefore, from (19)-(20) we derive the following proposition.
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Proposition 2.1. The Bernoulli polynomials are expressed in terms of the ∞-GFS as
follows

Bn(x) = n!×Hn(x) = n!×
n∑

s=0

vn−s
s!

xs = n!×
n∑

s=0

ρ(n− s, 0)

s!
xs, (21)

where Hn(x) is given by (20), ρ(n, 0) (given by (9)) is the combinatoric expression of the

∞-GFS {vn}n∈Z, whose coefficients are an = − 1

(n+ 2)!
(n ≥ 0) and initial values are

v0 = 1 and v−j = 0 for all j ≥ 1. More precisely, we have the following combinatorial
form of the Bernoulli polynomial

Bn(x) =
n∑

k=0

(n− k)!(nk)ρ(n− k, 0)xk,

where the ρ(n, 0) are given by (9).

The first few Bernoulli polynomials can be recovered easily as follows. Since

a0 = −1

2
, a1 = −1

6
, a2 = − 1

24
, a3 = − 1

120
;

expression (1) implies that v0 = 1; v1 = −1
2 ; v2 = 1

12 ; v3 = 0 and v4 = − 1
720 . Thus, a

straightforward application of expression (21) gives,

B0(x) = 1 , B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
and B3(x) = x3 − 3

2
x2 +

1

2
x.

Moreover, we have

Hn+1(x) =

n+1∑
k=0

vn+1−k
xk

k!
= vn+1 +

n∑
s=0

vn−s
xs+1

(s+ 1)!
= vn+1 +

∫ x

0
Hn(t)dt,

Therefore, we have

Bn+1(x) = (n+ 1)!vn+1 + (n+ 1)

∫ x

0

Bn(t)

n!
dt = Bn+1 + (n+ 1)

∫ x

0
Bn(t)dt.

3 Conclusion

In this work we discuss about the application of ∞-generalized Fibonacci sequences
(∞-GFS for short) in the to study some properties of Bernoulli and Genocchi numbers
and their related classical numbers and polynomials. There are natural questions about
this. Can we derive from results of our preceding papers an asymptotic behavior of the
Bernoulli numbers? And therefore, derive also an asymptotic behavior of Genocchi and
Euler numbers? The computer values show us that the answers is yes. Those are questions
for future works.
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