Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Comparativo entre os Métodos da Falsa Posição e Ridders

Antonio Lucas dos Santos Carlos¹
Gustavo Krause Vieira Garcia ²
Valdessandro Farias Dantas³
Ivan Mezzomo⁴
Matheus da Silva Menezes⁵
Departamento Ciências Naturais, Matemática e Estatística, UFERSA, Mossoró, RN

Existem diversos métodos numéricos para encontrar raízes de funções, sendo cada um deles com sua peculiaridade e vantagem em relação a cada tipo de função. Este trabalho tem por objetivo comparar a convergência dos métodos de falsa posição e de Ridders através do número de iterações, erro absoluto e custo computacional.

O método da falsa posição consiste em obter a aproximação para a raiz no intervalo [a,b] através média ponderada [3]. O método de Ridders é uma variação do método da falsa posição. Primeiramente, ele usa uma função de aproximação de ajuste exponencial, o que tende a acelerar a convergência para a raiz. Dada uma função f(x), a função de aproximação g(x) é dada por $g(x) = f(x)e^{xm}$, onde e^{xm} é a fator exponencial de aproximação, m é um fator que depende dos três pontos usados em cada iteração e x é a distância relativa de cada ponto ao extremo inferior do intervalo [2]. Assumindo que o intervalo $[x_1, x_2]$ contém a raiz, o método consiste em encontrar x_3 pela média aritmética desse intervalo e interpolar linearmente através de g(x) os pontos $(x_1, g(x_1))$, $(x_2, g(x_2))$ e $(x_3, g(x_3))$, onde $g(x_3) = (g(x_1) + g(x_2))/2$. Uma vantagem do método de Ridders em relação ao método da falsa posição é que ele elimina a necessidade de aplicar o teorema de Bolzano a cada iteração [1]. A partir de g(x) e dos pontos $(x_1, g(x_1))$, $(x_2, g(x_2))$, $(x_3, g(x_3))$, obtemos a seguinte função de iteração:

$$x_4 = x_3 + (x_3 - x_1) \frac{sign[f(x_1) - f(x_2)]f(x_3)}{\sqrt{(f(x_3))^2 - f(x_1)f(x_2)}}$$
(1)

O método de Ridders realiza um ajuste através da dualidade de sinais da função de aproximação $f(x_1)$ e $f(x_2)$ a fim de se aproximar da raiz, ou seja, o sinal é "+" se $f(x_1) > f(x_2)$ e "-" se $f(x_1) < f(x_2)$. Após a primeira iteração, renomeamos o intervalo que contém a raiz por $[x_1, x_2]$ e aplicamos na Eq. (1).

Todas as funções foram analisadas em intervalo [-5,5], utilizamos como critérios de parada $f(x_k) < \epsilon$, com precisão de 10^{-5} . Utilizamos as seguintes funções: $f_1(x) =$

¹lucas7@outlook.com

²gustavo-krause@hotmail.com

³valdessandro.dantas@gmail.com

⁴imezzomo@ufersa.edu.br

⁵matheus@ufersa.edu.br

2

$$\sqrt[5]{x^2 + 7760} - 3x$$
, $f_2(x) = e^x - e$, $f_3(x) = \frac{x^2 + 9x - 8}{e^x}$, $f_4(x) = \ln\left(\frac{(x + 2\pi)^2}{100}\right)/(x^2 + 1)$ e $f_5(x) = x^2 + 2x - 16$.

Tabela 1: Resultados dos experimentos realizados

Tabela 1. Resultades des emperimentes realizades				
$f_1(x)$	# Iterações	Raiz Exata	Raiz Calculada	Erro absoluto
M. Falsa Posição	3	2	2,0000010822	$3,241299 \times 10^{-6}$
M. Ridders	3	2	2 (aprox.)	$1,385558 \times 10^{-13}$
$f_2(x)$				
M. Falsa Posição	207	1	0,9999964144	$9,746681 \times 10^{-6}$
M. Ridders	4	1	1,0000003235	$8,793155 \times 10^{-7}$
$f_3(x)$				
M. Falsa Posição	3725	$\frac{\sqrt{113}-9}{2}$	0,8150750299	$9,991282 \times 10^{-6}$
M. Ridders	7	$\frac{\sqrt{113}-9}{2}$	0,8150739078	$4,711778 \times 10^{-6}$
$f_4(x)$				
M. Falsa Posição	7	$10-2\pi$	3,7174884690	$9,092661 \times 10^{-6}$
M. Ridders	1249	$10-2\pi$	3,7175543933	$9,981951 \times 10^{-6}$
$f_5(x)$				
M. Falsa Posição	12	$\sqrt{17}-1$	3,1231047278	$7,403989 \times 10^{-6}$
M. Ridders	232	$\sqrt{17}-1$	3,1231067944	$9,637987 \times 10^{-6}$

Analisando a tabela acima, notamos que os dois métodos convergiram em todas as funções analisadas. Na função 1, ambos apresentaram o mesmo número de iterações sendo que Ridders apresentou um menor erro absoluto. Nas funções 2 e 3, o método de Ridders convergiu com menos iterações, provavelmente devido a grande diferença de valores da imagem das funções nos extremos do intervalo. Já na função 4, como a diferença de imagem é pequena, o método da falsa posição foi mais eficiente em relação ao número de iterações devido as características do método. Na função 5, embora possua uma diferença considerável nas imagens, o método de Ridders não foi mais eficiente provavelmente pelo comportamento da função pois o intervalo [-5,5] contém um ponto de ponto (crítico) de mínimo. Entretanto, se considerarmos um intervalo que não contém o ponto crítico, o método de Ridders volta a ser mais eficiente que o método da falsa posição.

Referências

- [1] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. *Numerical Recipes: The Art of Scientistic Computing.* 3. ed., Cambridge University Press, New York, 2007.
- [2] C. J. F. Ridders. A New Algorithm for Computing a Single Root of a Real Continuous Function. IEEE Transactions on Circuits and Systems, Vol. 26 (11) (1979) 979 980. DOI: 10.1109/TCS.1979.1084580.
- [3] M. A. G. Ruggiero and V. L. R. Lopes. Cálculo Numérico, aspectos teoricos e computacionais. 2. ed., Pearson, São Paulo, 1997.