Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Uma Estratificação Visual dos Números Inteiros via fractais n-gons

Lúcia M. dos S. Pinto, Juscelino Bezerra dos S., Isaac V. S. Rodrigues³ Escola Nacional de Ciências Estatísticas, Instituto Brasileiro de Geografia e Estatística, RJ

Resumo

Um inteiro positivo p é primo se seus únicos divisores positivos são 1 e p. O estudo destes números desperta a curiosidade dos matemáticos desde a antiguidade e se tornou de grande relevância nas últimas décadas devido as suas aplicações em criptografia [2]. Sabe-se, por exemplo, que existem infinitos primos e que a sua distribuição na reta real é aleatória. Ao contrário disto, a visualização da sequência dos números primos em outras estruturas geométricas indica alguns padrões curiosos. A espiral de Ulam [3], por exemplo, apresenta uma aparência fortemente não aleatória, onde os primos se concentram nas diagonais desta espiral. Tal estrutura é composta por pontos distintos que seguem uma enumeração e uma regra de construção bastante simples. Assim como o estudo feito por Ulam, o objetivo deste trabalho é construir um painel visual enumerado para identificar padrões na sequência dos primos. Para este fim, vamos utilizar a estrutura de um fractal de Sierpinski ou n-gon [1].

Um fractal é uma estrutura geométrica que repete-se dentro de si mesmo infinitamente. Tais repetições são chamadas de contrações. Computacionalmente, muitos fractais são construídos a partir de um algorítimo recursivo, e o que visualizamos é apenas uma etapa desta construção, resultando em um número finito de contrações, o que gera uma boa aproximação do fractal. Cada etapa desta recursão, define um nível do fractal como podemos ver na 1.

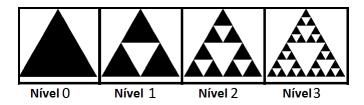


Figura 1: Diferentes níveis na construção do Triângulo de Sierpinski.

¹lucia.pinto@ibge.gov.br

 $^{^2 {\}it juscelino.s} antos@ibge.gov.br$

³isaacvictor@fisica.if.uff.br

2

Os fractais de Sierpinski são construídos de forma iterativa. O mais conhecido deles, o Triângulo de Sierpinski, pode ser construído a partir de um triângulo equilátero e a cada iteração posicionamos em cada vértice do triângulo uma contração sua, de forma que em cada nível desta construção, cada triângulo é dividido igualmente em quatro triângulos equiláteros e em seguida remove-se o triângulo central. Na sequência, repete-se o mesmo processo para cada um dos triângulos resultantes como apresentado na figura 1. Um processo similar pode ser utilizado para qualquer polígono regular de n lados, e desta forma obtemos os chamados n-gons. A ideia central deste trabalho é desenvolver um agoritmo para se construir n-gons via Python 2 (www.python.org) de forma a enumerar as suas menores contrações com o objetivo de visualizar alguns resultados importantes sobre números primos. Na figura 2, utilizamos 6-gons para visualizar a distribuição dos primos nestas enumerações onde destacamos os primos entre 1 e 216, e vemos que eles estão em duas contrações específicas. Em decorrência da enumeração utilizada, as contrações são descritas na forma de aritmética modular, elas absorvem as classes de inteiros módulo 6ⁱ, permitindo ver, por exemplo, que um primo p será da forma $6k \pm 1$. Vale salientar que outros resultados clássicos podem ser visualizados a partir desta figura.

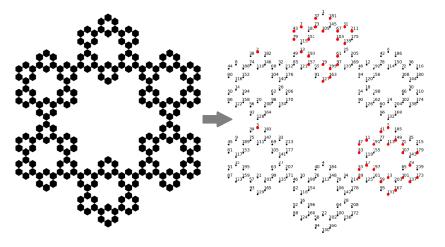


Figura 2: Enumeração do terceiro nível do 6-gon.

Palavras-chave. Números Primos, Congruências, Fractais, N-gons.

Referências

- [1] K. Dennis, S. Schlicker. Sierpinski n-gons. Pi Mu Epsilon Journal, Vol. 10, No. 2, pp. 81-89 (1995).
- [2] C. A. da Silva Fusco, S. P. Coelho. Um pouco da teoria dos números: da antiguidade até os dias atuais. *Ensino da Matemática em Debate*. ISSN 2358-4122 1.2 (2014).
- [3] M. L. Stein, M. B. Wells, S. M. Ulam. A Visual Display of Some Properties of the Distribution of Primes. American Mathematics Monthly, 71, pp. 516-520, 1964. doi: 10.2307/2312588