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Abstract. This work studies an inverse problem of determining the fractional order, a diffu-
sion coefficient and the average velocity simultaneously in one-dimensional space fractional
advection–diffusion equation. The forward problem is performed by an implicit finite diffe-
rence scheme. Here, the solution of the inverse problem is performed in R environment using
the Generalized Simulated Annealing algorithm (GenSA) package. Numerical experiments
show that the algorithm is able to retrieve the parameters with good accuracy.
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1 Introduction

For many decades diffusion processes were described by Fick’s law and its genera-
lizations, however this approach cannot describe transport phenomena in which particles
spreads faster or slower than the predicted by the classical models. This class of processes
are referred to as anomalous diffusion, and in the last two decades has been generating
increasing interest in many fields, as biology [11], medicine [16] and finance [1].

In this context, fractional diffusion equations have shown be quite efficient for mathe-
matical modeling such anomalous transport process by replacing traditional integer order
derivatives with fractional derivative.

Inverse modeling of such kind of equation is important, as it can provide an estimate
of parameters that in many cases cannot be measured using direct modeling. Due to the
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the fast growth of fractional calculus and the large number of phenomena represented by
the fractional diffusion equations, inverse problems involving anomalous diffusion models
have been investigated in several recent publications, as can be verified in [4], [7] and [13].

In general, inverse problems involving differential equations of fractional order seek
to estimate the parameters of the model, such as diffusion coefficient and advection, the
fractional order of the equations or even source terms.

This paper consider the analysis of simultaneous inversion of the fractional order, the
diffusion coefficients and the average velocity in the following space fractional advection-
diffusion equation, SFADE:

∂u

∂t
= D

∂αu

∂xα
− v∂u

∂x
+ g(x, t), 0 ≤ x ≤ L, 0 ≤ t ≤ tf (1a)

subject to the initial and boundary conditions given by:

u(x, 0) = f(x) (1b)

u(0, t) = 0, u(L, t) = 0 (1c,d)

where u(x, t) represents, for example, a solute concentration, 1 < α < 2 is the order of
the fractional derivative, D is the diffusion coefficient, v > 0 is the average velocity, while
g(x, t) is a external source and ∂αu

∂xα is the Riemann-Liouville fractional derivative in space
of u.

At first, a sensitivity analysis of parameters is performed in order to verify the possi-
bility of estimating the three parameters of the model simultaneously. Then, Generalized
Simulated Anealing algorithm is used for the solution of the inverse problem.

2 The Foward Problem

The implicit finite difference schemes were employed for solving the foward problem.
We consider a space domain [0, L] that is discretised with M + 1 uniformly spaced nodes
xi = i × h, i = 0, . . . ,M , with the spatial step h = L/N and time time ∆t = tf/N . The
space frational derivative are approximated using the Shifted Grünwald formula [8]:

∂αu

∂xα
=

1

hα

i+1∑
k=0

Γ(k − α)

Γ(−α)Γ(k + 1)
un+1
i−k+1 (2)

the first order derivative in Eq. (1a) is approximated using second order central differences
and the the temporal derivative by the standard first order backward difference, or implicit
Euler method. Defining uni ≈ u(xi, tn) as the numerical solution, we obtain the implicit
scheme:

un+1
i − uni

∆t
= +D

1

hα

i+1∑
k=0

Γ(k − α)

Γ(−α)Γ(k + 1)
un+1
i−k+1 − v

(
un+1
i − un+1

i−1

h

)
+ gn+1

i (3)
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Defining:

q =
D∆t

hα
, p =

v∆t

h
, dk =

Γ(k − α)

Γ(−α)Γ(k + 1)
(4a-c)

together with initial and boundary conditions, Eqs. (1b-d), the numerical schemes become:

un+1
i − uni = −pun+1

i + pun+1
i−1 + q

i+1∑
k=0

dku
n+1
i−k+1 + ∆tgn+1

i (5)

which can be written in the matrix form Aun+1 = un + ∆tgn+1, with A = (aij)M−1×M−1

and coefficientes aij for i = 1, . . .M − 2 and i = M − 1, given, respectively, by:

aij =



0, j > i+ 1

−qd0, j = i+ 1,

1 + p− qd1, j = i

−p− qd2, j = i− 1

−qdi−j+1, j < i− 1

, aM−1,j =


−qdM−j , j = 1, . . .M − 3

−p− qd2, j = M − 2

1 + p− qd1, j = M − 1

(6a,b)

The stability and convergence of the above difference scheme are proved in [3]. Here,
the problem given in Eq. (5) is solved with a C routine.

3 The Inverse Problem

For investigating the inverse problem solution concerning the estimation of the three
model parameters, P = {α,D, V }, we consider a vector of experimental data Y ={
uexp1 , uexp1 , . . . , uexpNd

}
, simulated with the solution of Eq. (5) and with the addition of

noise generated from a normal distribution with zero mean and known variance:

Yi = ui(Pexact) + εi, ε ≈ N(0, σ2i ) (7)

where uexpi are the experimental data in one or more positions and in different times, and
Nd is the number of experimental data available.

3.1 Generalized Simulated Annealing

The Generalized Simulated Annealing introduced by [12] is a stochastic optimiza-
tion algorithm based on the classical Simulated Annealing [5] and on the Fast Simulated
Annealing [14]. This method has been applied in different problems such as epidemic
models [6], protein folding [2] and optmization for inversion of first-arrival [9].

Basically, in GenSA candidate solutions are generated iteratively following a genera-
lized Gaussian distribution and are accepted or not according to a Metropolis-like criterion.
The stochasticity of both the generation of solutions and the acceptance criterion are
controlled by the “temperature”, which is gradually decreased through a predefined cooling
schedule [6].

The generalized simulated annealing can then be summarized in three stages:
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1. The probability distribution function or the distribution of visitation: GSA uses a
distorted Cauchy-Lorentz visiting distribution;

2. The probability of acceptance: a generalized Metropolis algorithm is used for the
acceptance probability;

3. The programming of cooling or reduction of temperature.

The mathematical expressions for the three stages are detailed in [12].

In this work, the inverse problem are performed in R environment [10], using the
package GenSA [15] that provides an implementation of Generalized Simulated Anealing
algorithm. The GenSA R Package, it is used into a new R package, still in development,
for solving inverse problems. The developed routines allow the evaluation of the sensitivity
coefficients and the solution of the inverse problem using R packages for solving optimiza-
tion problem. It is also able to call a external routine developed in other languages for
the direct problem solution, such as the C routine used in this work.

One of benefits of using R language and environment is that it enables rapid prototy-
ping of algorithms, access to a wide range of tools for statistical modeling, and the ability
to easily generate customized plots of results.

3.2 Sensitivity Analysis

For the sensitivity analysis it was considered the scaled sensitivity coefficients that
allows a more evident comparisons between the sensitivity coefficients with respect to
different parameters and identification of linear dependence. The scaled sensitivity coef-
ficients are obtained by multiplying the sensitivity coefficient by an estimate or reference

value of the each parameter X̄Pi = Pi
∂u

∂Pi
:

X̄α(x, t) = Pα
∂u

∂α
, X̄D(x, t) = PD

∂u

∂D
, X̄v(x, t) = Pv

∂u

∂v
(8a-c)

The first order derivatives are approximated by centered finite differences:

X̄Pi = Pi
uPi+δ(x, t)− uPi−δ(x, t)

2δ
, i = 1, . . . Nd (9)

where δ represents a small pertubation in the parameter that is being analysed.

4 Results and Discussions

4.1 Sensitivity Analysis

It was considered a test case with α = 1.8, D = 1.0 and v = 0.6. Figure 1 illustrates
the scaled sensitivity coefficients at t = 1 and in the spatial domain 0 ≤ x ≤ π.

After the sensitivity analysis it is possible to select the spatial positions where the
transient values of the sensitivity coefficients were predominantly larger and therefore
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becoming the preferred location for the installation of a possible sensor for the collection
of experimental data.

From the graphs analysis, it can be noticed that the sensitivity coefficients of parame-
ters v and D are relatively small compared to the fractional order α. However it was not
possible to determine the best position for performing transient measurements concerning
the inverse problem solution only by observing Figure 1. Thus, it was investigated the sen-
sitivity coefficients on time domain for different positions and the chosen was x = 3π/20.

α

D

v

0.5 1.0 1.5 2.0 2.5 3.0
x

-1.5

-1.0

-0.5

XPi

Figure 1: Sensitivity coefficients along
the spatial domain at t = 1.

α

D

v

0.5 1.0 1.5 2.0
t

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.2
XPi

Figure 2: Sensitivity coefficients along
the time domain at x = 3π/20.

4.2 Inverse Problem

For the solution of the inverse problem it was considered the following values: α = 1.8,
D = 1.0 and v = 0.6. For the inverse problem solution were employed 50 experimental
data from t = 0 to t = 1 using a single sensor located at x = 3π/20.
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Figure 3: Simulated experimental data
(dots) with σ = 0.0087.
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Figure 4: Simulated experimental data
(dots) with σ = 0.021.

Figures 3 and 4 show a set of experimental data at a single sensor x = 3π/20, simulated
by employing Eq. (7) with σ = 0.0087 and σ = 0.021, equivalent to 1% and 2.5% of the
maximum value in the data. The blue curve shows the numerical solution employed to
simulate the experimental data.
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The initial values for the parameters employed were Pini = {1.7, 0.4, 0.2}, the lower
and upper bounds for the parameters were chosen as Plower = {1.4, 0.1, 0.1} and Pupper =
{1.99, 3.0, 1.2}. The maximum running time of GenSA was fixed in 8 seconds and for the
other control arguments it was used the internal default values.

The cost function is defined as the sum of the residuals:

cost =
∑

(Yi − ucalci )2, i = 1, . . . 50 (10)

where Yi is the vector with experimental data and ucalci is the vector with calculated values
at each iteration of the method.

The inverse problem solution 1 is presented in Table 1. The results show that the
errors present in the inputs amplify the estimates of the parameters, however the inversion
solution is satisfactory even in the case of 2.5% noise level.

Table 1: Inverse problem results for

noise α D v Iter cost

− 1.799996 1.000005 0.600001 351 1.06× 10−12

1% 1.797359 1.007327 0.606635 400 3.36× 10−3

2.5% 1.796836 1.012072 0.609231 386 1.4× 10−2

5 Conclusions

The inverse problem formulation and solution for three parameters were investigated
in relation to a space fractional advection-diffusion equation. The inverse analysis was
carried out for transient measured experimental data obtained with a single sensor and,
for the considered case in this work, it was possible to estimate simultaneously with good
accuracy all three parameters that characterizes the model. In future works it is interesting
to investigate the application of the approach proposed in this work for the solution of
other types of inverse problems in anomalous diffusion equations, like the estimation of
the orders of the fractional derivatives in space-time fractional diffusion from real data.
Moreover, besides GenSA other R packages for solving optimization problems will be
tested, in order to develop a practical tool for solving this class of problem.
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