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Diffusive Riemann Solutions for 3-phase flow in Porous Media
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Abstract. We study the diffusive effect caused by capillary pressure in three-phase flow in
porous media, which is modeled by a system of two nonlinear conservation laws. We solve a
class of Riemann problems where one of the viscosities is higher than the other two; we first
develop a methodology using artificial diffusion and identify the transitional surfaces and
associated shocks, resulting from loss of strict hyperbolicity at an isolated point in the space
of saturations. We identify the surfaces that characterize solutions which require transitional
shocks. We use the wave curve method to determine the solutions for arbitrary Riemann
data, except for a small set of right states that utilize transitional rarefactions. We present
the transitional surface for the general case where diffusion arises from capillary effects.
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1 Introduction

Here, we solve a now longstanding unresolved problem in shock wave theory, namely,
to characterize the nonlinear wave structure that emerges from discontinuous (Riemann)
initial data for the problem of three phase flow in a porous medium. The wave structure
is described for most pairs of constant states, and a precise notion of uniqueness and
continuous dependence on initial states is formulated and demonstrated to apply.

The main obstacle to a characterization of nonlinear waves in three-phase flow is the
presence of umbilic points where wave speeds coincide. This leads to the presence of
complicated waves that obscure the recognition of stable wave structures from unstable
ones. We give the solution to the Riemann problem for the equations of three-phase flow,
including a successful entropy condition for choosing the stable family of solutions, and
providing compelling evidence that such a family exists having the property of continuous
dependence on left and right states.

We now describe briefly previous work related to our study, see [13] for details. In [8, 9],
Isaacson et. al. identified transitional waves in the Riemann solution of certain pairs of
conservation laws. Unlike classical shocks, for transitional shocks, the Rankine-Hugoniot
constraints linking the states on the sides of the shock are insufficient to determine the
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waves emerging along outgoing characteristics. It was shown in [11, 12] that the require-
ment of existence of viscous profiles gives the right number of additional constraints. Also,
the additional equations resulting from the viscous profile requirement are introduced ex-
plicitly. In [6, 7], Azevedo et. al. established existence, uniqueness and L1

loc-continuity
under change of data of Riemann solutions for green reservoirs. In [3] Andrade et. al.
exhibited Riemann solutions for right states near vertex O and left states along [G,W ].
In [4] the results were extended for right states near O. In [5], in the presence of nontrivial
diffusion terms, it is not the elliptic region that plays the role of an instability region;
rather, it is the region defined by Majda-Pego. In [1, 2], Abreu et. al., performed two
dimensional numerical simulations of Riemann solutions with capillary effects.

This work is organized as follows. In Section 2, we recall the mathematical model for
three-phase flow in porous media and discuss the admissibility of discontinuities under
the viscous profile criterion. In Section 3 construct the backward fast wave curves and
the so-called R-regions associated with them. In Section 4 we determine the L -regions
associated to some R-region described in Section 3. In Section 5 we present the surface
of transitional shocks for a physically correct viscosity matrix.

Our numerical experiments used the softwares “RPN” and “ELI,” developed in close
collaboration with B. J. Plohr. Calculations in MATLAB were also performed.

2 Mathematical model

In this section, we recall some basic facts about the mathematical model, which is also
studied in [6, 7, 9]. We consider the flow of a mixture of three fluid phases (water, gas
and oil) in a thin, horizontal cylinder of porous rock. Let sw(x, t), sg(x, t) and so(x, t)
denote the corresponding saturations at distance x along the cylinder, at time t. Under
our simplifications, the governing equations for three-phase flow become

∂tsw + ∂xfw = 0, ∂tso + ∂xfo = 0, (1)

which is a non-dimensionalized system representing conservation of water, gas, oil, and
Darcy’s law. We adopt the following flux functions:

fw = s2w/(µwD), fo = s2o/(µoD), where D = s2w/µw + s2o/µo + s2g/µg > 0, (2)

and the constants µw, µo and µg are the phase viscosities. These represent a simple
Corey’s model with quadratic relative permeability functions. Because sw + sg + so = 1
and 0 ≤ sw, so, sg ≤ 1, following practice in petroleum engineering we depict the space of
states of the fluid mixture in barycentric coordinates as the saturation triangle shown in
Fig. 1, where we use the labels O, W , and G to designate the states with saturation so = 1,
sw = 1, and sg = 1, respectively. The state B corresponds to so = 0, sw = µw/(µw + µg),
and sg = µg/(µw +µg); the state D to so = µo/(µw +µo), sw = µw/(µw +µo), and sg = 0;
the state E to so = µo/(µg +µo), sw = 0, and sg = µg/(µg +µo). The state U in Fig. 1 is
an umbilic point [14]. It is the unique state in the interior of the saturation triangle where
the characteristic speeds coincide; its coordinates are determined by the fluid viscosities
as so = µo/µtot, sw = µw/µtot, and sg = µg/µtot, with µtot = µw + µo + µg.
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(a) Slow-family integral curves. (b) Fast-family integral curves.

Figure 1: Integral curves for characteristic families. The arrow indicates the direction on which
characteristic speeds increase. The inflection curves for each family are represented by dashed
lines. In this figures the umbilic point is of type IIO.

2.1 Admissibility of discontinuities

In multiphase flow, it is essential to take into account the effect of capillary pressure
between the different fluids. Instead of the system (1), we obtain the following parabolic
system:

Ut + F (U)x = ε (B(U)Ux)x . (3)

Of course the original equations were properly scaled, and the coefficient ε of the diffusive
term in (3) is often rather small. In this system U = (sw, so)

T , F (U) = (fw(U), fo(U))T ,
and B(U) is a matrix depending on the relative permeabilities and viscosities of the three
fluids, and on the partial derivatives of capillary pressures, see Chapter 3 of [10]. In [5],
it is shown that B(U) is symmetric and positive definite in the interior of the saturation
triangle. In view of system (3), the natural admissibility criterion for shocks is the viscous
profile criterion: a shock joining U− to U+ must be the limit, as the positive parameter ε
tends to zero, of traveling wave solutions U(x, t) = Ũ((x− σt)/ε) of the parabolic system
(3), where σ = σ(U−, U+) is the shock speed, with the boundary conditions U(−∞) = U−

and U(+∞) = U+. Since the traveling wave U is a smooth function of ξ = (x − σt)/ε,
this system can be integrated to yield the system of ordinary differential equations

B(U(ξ))U ′(ξ) = −σ
(
U(ξ)− U−

)
+ F (U(ξ))− F (U−), (4)

for which both U− and U+ are singularities of the vector field. A traveling wave solution
corresponds to a connection U− to U+ and is called a viscous profile of the shock wave.

3 Wave curves

Now, we characterize the wave curves in the Corey Quad model with B(U) = I. Since
we want to use the wave curves to solve the Riemann problem in the whole saturation
triangle for U of type II, we first identify the regions where the wave curves have the
same number and types of waves groups. Then, we study how these regions change when
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(a) Regions R1,R2 and R3. (b) Highlight of regions Ri for i ∈
{4, 4′, 5, 5′, 6, 6′}.

Figure 2: Subdivisions of subtriangle {O,U ,W} in R-regions for 1 < µw+µo/µg < 8 and U ∈ IIO.

µw, µo and µg vary. These results provide scientific evidence for the existence of Riemann
solutions, based on a combination of analytical and computational techniques.

3.1 Subdivision in backward R-regions: umbilic point type II

Let T be an open set of states in the saturation triangle. We say that T is a backward
(alternatively, a forward) R-region if for every right state R ∈ T , the backward (forward)
fast wave curve W−f (R) (W+

f (R)), has the same structure, i.e, it has exactly the same
wave sequence. We define forward (backward) L -regions similarly.

The methodology for constructing of the R-regions is as follows: first, we find the bifur-
cation manifolds (Chapter 4 of [10]) and the boundaries for compatibility and admissibility
loss (Section 6.2 of [10]). We also consider the extensions of segments of the invariant line
associated to the subtriangle {O,U ,W}. Then, we build the backward fast wave curves
in {O,U ,W} using the succession algorithm from Section (2.7) of [10], studying the be-
havior of each wave group with respect to the bifurcation manifolds and the compatibility
boundaries, and verifying numerically if each Lax f -shock has viscous profile.

We restrict this presentation to the the subtriangle {O,U ,W}. We study the case with
umbilic point U ∈ IIO, where µo + µg/µw > 1, µw + µg/µo < 1 and 1 < µw + µo/µg ≤ 8.
In Figure (2) we show the subdivision in R-regions for the subtriangle {O,U ,W}. The
description of the curves that define each region and the other cases can be found in [10].

4 Diagrams of comparison between regions

In this section, we summarize the distinct Riemann solutions and study the behavior
of these solutions in two types of data variation. In the first setting, we fix the right state
R and see how solutions change continuously as L traverses the phase space continuously.
Notice how the bifurcations and the compatibility boundaries take the role of transition
bridges between regions. In the second variation scenario, by fixing L and varying R
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(b) L -regions for R in region R2.

Figure 3: Diagrams of changes between L -regions for R in region R1 and R2, see Figure 2. Green
region represents the left states L that use single transitional shocks in the Riemann solution. The
nomenclature for structures A,B, . . . , I,J1,J2 and J3 are in Table 1.

continuously, we can see how L -regions arise or disappear continuously. There is a third
possible variation study to analyze the behavior of Riemann solutions: when we vary the
viscosities (while keeping the umbilic point of type II) the boundaries of the R-regions
move. So, even with the right state R fixed, it changes regions continuously in a similar
manner to the first variation setting. In Table 1 we summarize the possible solutions that

A : Ss Sf B : SsRf C : Rs Sf D : RsRf

E : Rs
′Ss Sf F : Rs

′SsRf G : SsRf
′Sf H : RsRf

′Sf

I : Rs
′SsRf

′Sf J1 : Rs
′Ss ST Sf J2 : Ss ST Sf J3 : Rs ST Sf

Table 1: Nomenclature of distinct waves structures in L -regions for the R1 and R2-regions.

are involved in classical and transitional Riemann solutions, not considering the delta
wing [10] and transitional rarefactions. The justification and description of the L and
R-regions can be found in [10]. Notice that the number of different structures varies as
we change the R-region. For example, if considering R ∈ R1, we have only nine distinct
structures, see Figure 3(a). Transitional waves are not used in this case. In Figure (3)(b)
we show the division in L -regions for R into the R2-region which use transitional shocks.

5 Nonlinear effects of capillarity induced diffusion

In Figure 4 we present the surface of transitional shocks for the case B(U) 6= I which
was constructed numerically. We consider the general case with B(U) defined in Chapter
3 of [10]. This matrix is associated with the correct diffusive effects caused by capillary
pressures [1, 2, 5]. We show that the surface of transitional shocks for this case has the
same topological structure found in the case of B(U) = I, see Chapter 7 [10].
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Figure 4: Surfaces of transitional shocks for umbilic point of type IIO and B(U) 6= I.

6 Conclusions

Here is a summary of our contributions to the problem of three-phase flow in porous
media, taking the viscosity matrix to be a multiple of the identity, and for arbitrary fluid
viscosities placing the umbilic point in case II of the Schaeffer-Shearer classification.

We characterized the structurally stable Riemann solutions. Namely, we determined
the sets of Riemann problems whose solutions have the same wave structure, in terms of
number, type and sequence of elementary waves. In the process, we studied the bifurca-
tions of backward-fast and forward-slow wave curves. This study led to the understanding
of how the saturation triangle is subdivided, depending on viscosity values, into R-regions
of right Riemann states for which the backward-fast wave curves are structurally stable.
This subdivision, in turn, induces a subsequent subdivision of the saturation triangle, for
each R-region, into L -regions of left Riemann states for which the corresponding Riemann
solutions are structurally stable. We presented the complete solution to the Riemann prob-
lem for three-phase flow. This includes demonstrating a successful entropy condition for
choosing the stable family of solutions, and establishing the compelling result that such
a family exists having the property of continuous dependence on left and right states.
We have also constructed the surface of transitional shocks for the general case of non-
linear viscosity matrices resulting from correct capillarity induced diffusive effects. Many
suggestions from F. Furtado, A. de Souza and B. J. Plohr are gratefully acknowledged.
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