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Abstract. Optimal operation of integrated heat exchangers is a challenge task in the field of
process control due to system nonlinearities, disturbances and adequate model identification.
This paper describes the design of an advanced neural network predictive control (NNPC)
applied to a heat exchanger network. A case study with two hot and one cold streams,
through three counter-current heat exchangers is used to test the proposed strategy. A
lumped dynamic model is built based on the concept of multi-cells topology (mixed tanks),
where the hot and cold cells are connected by a wall element throughout the heat exchanger
length. Each cell is assumed perfectly mixed and all physical properties are constant. A
distributed behavior is achieved by increasing the number of cells. The main assumptions
of the lumped model are constant temperature in each cell, heat exchanger volume and area
equally distributed between cells and negligible heat loss to the environment. The predictive
controller relies on a neural-based model of the plant that is used to identify the system and
to predict future performance over a predefined horizon. Results showed good control output
regarding set point tracking.
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1 Introduction

Heat exchanger networks (HEN) are a recurrent subject in process systems engineer-
ing due to their capability to recover energy from hot and cold process streams and, thus,
maintain the operation at a competitive economic level. However, heat integration also
often results in more complex and less operable plants [6]. In the majority of the cases,
the thermal outlet condition is frequently a controlled variable that must attend prod-
ucts specification, environmental restrictions and safety constraints without reducing the
operation efficiency [4].
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Analysis that evaluate the ability of the plant to deal with disturbances, controllabil-
ity indexes and the design of proper control structure has become an important part in
the literature regarding operation and control of integrated systems. Early contributions
addressed structural and flexible design approaches for HEN control and optimal opera-
tion. Those topics contributed to develop strategies for bypass selection to incorporate
control decisions [8] optimal synthesis and control structure design for flexible HENs [2]
and advanced control strategies to increase energy savings [1].

In a recent study, a thermodynamically based approach proposed by [7] described a
methodology to relate process control and process design stage, analyzing the disturbance
cost and the relative gain array aiming to obtain the best balance between integration and
control. On the other hand, the design of the control system itself is often considered as
an independent task. Compared to the well-developed HEN design literature, much less
effort has been dedicated to its control and operation.

Among control techniques available, the proportional-integral-derivative (PID) con-
troller is one of the most used in the industries. However, it may not be suitable for all
purposes dynamics, leading to poor quality control indexes, such as overshoot, settling
and rising time, as presented by [3].

The model predictive control (MPC) is worth highlighting due to its proven ability
to handle heat integrated process. The MPC relies on a dynamic model of the process
to predict output trajectories performed by an online optimization [4]. Furthermore, the
possibility to include constraints on the process variables in the optimization model is
an important feature that distinguishes the MPC from the other conventional control
approaches. They enforce bounds of these variables within physical and safety limits, if a
feasible solution to the optimization problem exists [5].

Regarding model identification, a well-trained artificial neural network (ANN) can
represent thermal process with a quick and reliable way to predict future performance, as
demonstrated by several works in neural computational field [9].

Therefore, this work aims to develop a multi-layer neural network model trained by
a back-propagation algorithm to represent the nonlinear behavior of the heat exchanger
network. Then, perform simulations combining the neural network with a predictive con-
troller to assess its performance regarding set point tracking.

2 Heat exchanger network mathematical model

2.1 System description

The heat exchanger network simulated in this work is branch of a pre-heat train from
a refinery composed by three shell and tube heat exchangers in series. Also, three oil
streams are available at different temperatures.

The cold stream C1 (light oil) is passed through the three counter-current heat ex-
changers. Hot streams H1 and H2 (heavy oils) are used to increase C1 outlet temperature
(controlled variable). In this case, only the mass flow rate of H1 can be manipulated to
keep the cold stream outlet temperature at the desired set-point. For all heat exchangers,
the hot fluid is located inside the tubes.
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Table 1: Heat exchanger geometric characteristics.

Area (m2) Vt (m3) Vs (m3) M (kg)

E-2 264 1.4 1.38 5480
E-3 77 0.45 0.67 2420
E-4 233 1.15 2.06 4830

Table 1 describes the geometric characteristics of each heat exchanger in the network.
Physical properties, such as density, heat capacity and heat transfer coefficients, were ob-
tained using the Aspen EDR database for steady-state simulation of each heat exchanger.

2.2 Dynamic modeling

Lumped models introduce the concept of a modeling cell, defined as a perfectly mixed
tank that exchanges heat with each other through a dividing wall. This approach leads
to ordinary differential equations regarding to time only, instead of partial differential
equations regarding to time and space [3].

Heat is transferred from one mixing tank in the hot side to the corresponding one in
the cold side, resulting in as many energy balances as the number of tanks (or cells). The
numeric linearization of the dynamic system is made around the steady-state operating
point, leading to a state-space description of the HEN. Ref. [3] presents the detailed
dynamic model.

For each cell, there are three equations derived from the energy balances, for hot fluid,
wall and cold fluid, respectively. Defining 3N as the number of modeling cells, which
n = 1, . . . , N , the energy balances for the hot side (subscript h) is written as follows:
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For the dividing wall:
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And, then, for the cold fluid:
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In Equations (1) - (3), h is the heat transfer coefficient (W/m2K), V is the cell volume
(m3), Cp is the heat capacity (J/kgK), ρ is the density (kg/m3), m is the mass flow
rate (kg/s) and As and At are the shell and tube areas for each cell (m2), respectively.
The HEN model was implemented in Matlab R2018a considering N = 10 in all the heat
exchangers.
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3 Neural network model predictive controller

Two typical steps are involved when using neural networks for control: system identifi-
cation and control design. First, the neural network is developed (or trained) to represent
the plant. Then, for model predictive control, the control design is performed by using the
plant model and an optimization algorithm computes the control signals that optimizes
future plant performance at each time step.

3.1 Artificial neural network model

An artificial neural network is inspired by the human neural network, consisting in a
set of neurons and nodes, that try to establish a relationship between input and output
information. The neurons carry out the task of processing information, transmitting it as
a weight in a relationship between them and, thus, predicting the output values.(Omrani
et al., 2018) The training process consists in adjust the weights between the neurons and
may be handle by supervised or non-supervised learning algorithms. Supervised machine
learning is the most commonly used and is applied in this work. It consists in using the
data set as the teaching method to continuously update the weight and bias until the
algorithm achieves the desired performance. Figure 1 illustrates the learning process of
an artificial neural network.

Figure 1: Schematic diagram of an artificial neural network learning process.

Regarding the supervised algorithms, the Levenberg-Marquardt is one of the most
popular and fastest back propagation methods and was chosen as the training function
for this work. The aim of the Levenberg-Marquardt is to minimize the mean square error
between the targets and the outputs. A multi-layer (input, hidden and output layers)
was implemented and the training procedure updated the weight and bias of the neural
network in the batch mode until the stop criterion was achieved. The dynamic model was
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used to generate the training data for the neural network model. There were considered
a sampling interval of 1 second, generating 1500 samples of data series.

3.2 MPC design formulation

The cost function for optimal control is defined as for the i-th step can be written as:

J (i) =

N2∑
j=1

(yr (i+ j) − ym (i+ j))2 + λ

Nu∑
j=1

∆u′(i+ j − 1)2 (4)

where Nu is the horizon over which the deviation in control action is minimized (control
horizon), N2 is the horizon over which the set-point error is minimized (cost horizon), λ is
the control weighting factor multiplying the deviation in control action, yr is the reference
value, ym is the predicted controlled output and u′ is the optimal input to the plant. The
control output and input variables are box constrained. The model obtained by the neural
network is used by the MPC to predict future control actions over a predefined horizon.
The minimization routine csrchbac was used to solve the optimization problem. All the
simulations were performed using Matlab/Simulink. The analysis was made by applying a
noise in the manipulated variable and the cold outlet temperature behavior was observed.

4 Results

4.1 Neural network training and validation

Neural network training performance was assessed by the mean square error (MSE).
Low MSE indicates that the predicted data are closer to the true values. For the case
study presented by this work, a two-layer network with 8 neurons in the hidden layer and
one neuron in the output layer was created and the value of MSE was 2.70×10−6 at epoch
38, which indicates a good performance.

In addition, six validation tests were performed after the achievement of the best
validation performance (from epoch 38 to 44) and the validation performance did not
improve, indicating that the network is not overfitted and, thus, the training can be
considered successful.

4.2 Heat exchanger network simulation

Following the neural network training, the predictive control starts. The parameters
for the predictive controller was obtained after extensive simulations and are N2 = 6
(maximum predicted horizon), Nu = 2 (control horizon) and the smoothness factor λ
is 0.001. In addition, the control input constraints were 240 ≤ ṁ ≤ 280 kg/s and the
control output constraint 183 ≤ Tco ≤ 189.5 oC. Figure 3 shows NNPC response curve
to a positive and negative step changes in the set point. In order to compare the output
responses, a PID controller tuned by Ziegler-Nichols method was also simulated.

The steady-state was achieved after the first 100 s of simulation for the first step
change. However, analyzing the 300 s and 700 s (set point steps), it is clear the ability of
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Figure 2: Train, validation and test performances at each epoch for the neural network model.
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Figure 3: Step response set point tracking for NNPC and PID.

the NNPC in track the set point, with small values of overshoot and settling times. This
was possible by balancing the control and predicted horizon of the predictive controller. If
the predicted horizon was bigger, the controller would not be able to act during set point
changes in enough time to maintain good performance.

5 Conclusions

Improvements in control performance regarding set point tracking are presented in
this work by the application of a neural based predictive controller in a heat exchanger
network plant. A lumped parameter model was implemented to generate the training data
for the neural network. Simulation showed that the overall performance was satisfactory
when a NNPC is applied as the control system for plants with complex dynamics. The
controller system requires a well-trained network and adequate parameters for the predic-
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tive controller, however an important advantage of this approach is that the output and
input constraints can be directly included in the controller optimization problem. The
case study showed that overshoot and settling time can be improved with a more sophisti-
cated controller and the performance can be even more significant in bigger heat exchanger
networks. Also, this simulation can be extended for real plants by using measured values
of plant operation in the neural network training and validation procedures.
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