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1 Introduction

The movement of water in the soil is an important process in studies of management
and conservation of water resources, irrigation and drainage, as well as in the transport of
solutes (nutrients and pesticides). The water transport in the soil can be described numer-
ically using Richards equation, which combines Darcy’s law and the continuity equation.
However, for its solution, it is necessary to know the relationship between soil water con-
tent and pressure head, described by a water retention curve. The water retention curve
can be represented by several empirical models, in which their coefficients must be fitted to
different soil types. The determination of the coefficients using traditional methods (e.g.
Richards pressure plate apparatus) demands a significant amount of time and financial
resources. Thus, the present article proposes the use of inverse modeling techniques to fit
the coefficients of the soil water retention curve. In this way, the problem of inverse mod-
eling is solved by means of the squared residues functional minimization [8]. In the present
work, we use the Luus-Jaakola method [7, 10], a stochastic method, in the determination
of the parameters of interest.
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2 Mathematical Model

Consider the values obtained experimentally for the soil water content, θe. The residue
between the calculated, θc, and experimental quantity is given by

R = θc − θe (1)

where the subscript c indicates the value of θ calculated computationally, and the subscript
e indicates the value of θ obtained experimentally in the field, θ (m3m−3). The objective
is that the residue be as small as possible. Then, there is a minimization problem to be
tackled.

The functional of square residuaes is given by

Q(P) =
1

2
|R|2 =

1

2
RTR (2)

where R = (R1, ..., RM )T ∈ IRM represents the vector of residues, M is the amount of
experimental data, and P represents the parameters to be estimated, or, in other words,
the solution of the inverse problem [8].

Replacing (1) in (2), results

Q(P) =
1

2

M∑
i=1

(θci − θei )
2 (3)

2.1 Richards’ One-Dimensional Equation

In order to solve water infiltration problems in soil, the Richards equation, described
in its ψ-based form, is given by

C(ψ)
∂ψ

∂t
=

∂

∂z

[
K(ψ)

∂ (ψ − z)
∂z

]
(4)

where ψ is the pressure head (cm), C(ψ) is the water capacity, t is the time, K(ψ) is the
hydraulic conductivity (cmd−1), and z is the vertical coordinate (cm), from the origin to
the negative axis, −z [2, 9, 11]. The initial condition and the boundary conditions will be
defined in the section 4.

The equation for modeling the retention curve has already been proposed by several
authors [2]. In this work the curves of van Genuchten (eq. 5) [1] and of Haverkamp (eq.
6) [4] were chosen. They relate the soil water content and pressure head, θ = θ(ψ), and
are given, respectively, by

θ(ψ) = θr + (θs − θr) (1 + |αψ|n)−m (5)

θ(ψ) = θr +
B(θs − θr)
B + |ψ|λ

(6)
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The equations of hydraulic conductivity of van Genuchten (eq. 7) and of Haverkamp
(eq. 8) are given by

K(ψ) = Ks

(
1− (α|ψ|)n−1 [1 + (α|ψ|)n]−m

)2
[1 + (α|ψ|)n]−m/2 (7)

K(ψ) = Ks ·
A

A+ |ψ|φ
(8)

In equations (5) to (8), we have that θs is the saturated water content (cm3cm−3), θr is the
residual water content after drying the soil (cm3cm−3), Ks is the hydraulic conductivity
saturated (cmd−1), and α (cm−1), n and m (dimensionless) are empirical factors. The
parameters m and n are related by m = 1−1/n, [6]. In equations (6) and (8) λ is an index
related to the distribution of soil pores (cm), A, B and φ are dimensionless parameters.

2.2 Direct Problem Solution

According to Guterres [2], in regard to solving flow problems in porous media, a fun-
damental characteristic sought is the observance of mass conservation, an essential re-
quirement for the solution to have physical meaning. Then, since the conservation of the
physical quantities at the discrete level is an intrinsic feature of the Finite Volume Method
(FVM), this method was implemented to solve the Richards equation [9].

3 Inverse Problem Solution

Luus and Jaakola [7,10] developed a simple optimization procedure to solve nonlinear
programming problems. The procedure is based on minimizing the functional given by
equation (3). For that purpose, restrictions are defined as

MINP < P < MAXP (9)

where MINP and MAXP are respectively the vectors containing the lower and upper
limits of the search interval for the parameters of interest (vector P), and #(P) is the
number of parameters to be estimated.

This is a conditional minimization problem. The Luus-Jaakola’s proposal is described
in the algorithm below.

1. Read the vector with experimental data θe.

2. The restrictions are defined, ie, the maximum value and the minimum value for P,
see equation (9), according to the existing literature.

3. An initial random estimate (candidate solution) is generated, within the constraints
described in the previous step. Denote these initial values as P0, and the amplitude
of the search interval r0 = MAXP0 −MINP0 ;

4. Solve Richard’s equation, i.e. equation (4), and calculate the residue Q0 = Q(P0)
according to equation (3);
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5. Define the number of times that the amplitude of the search interval is reduced.
Denote this amount by Nout.

6. Define a number of possible candidate solutions, Nint.

7. For i = 1 : Nout do:

(a) For j = 1 : Nint do:

i. Generate random numbers between − 0.5 e + 0.5 for each of the parameters
to he determined. Denote these by Y;

ii. Take random numbers from step (7(a)i) and attribute to the new candidate
solution P, Pnew, given by

P i,jk = P i−1,j
k + Yk · ri−1

k , k = 1, . . . ,#(P)

iii. Test the restrictions imposed for each Pk, i = 1, . . . ,#(P). If Pk >
MAXPk

, then do Pk = MAXPk
. Se Pk < MINPk

, then do Pk = MINPk
;

iv. Calculate the new value θc, using equation (4);

v. Calculate the new residue Qnew = Q(Pnew) according to equation (3);

vi. If Qnew < Q0, then assume the new parameters obtained at random as the
optimal solution of the problem and Q0 = Qnew. Otherwise, discard the
new values for P;

(b) If i did not reach Nout, reduce the amplitude of the search interval by a per-
centage pre-defined in the algorithm, called ε, ri = (1− ε)ri−1 0 < ε < 1;

8. At the end of the procedure P is the best candidate solution which minimizes the
functional Q(P).

4 Results

The numerical results obtained are presented next. As described prevously, the direct
problem was solved using the FVM, and the Inverse Problem with the Luus-Jaakola’s
method. Both algorithms were implemented using SciLab, a free software developed for
scientific work research.

4.1 Test case 01 - van Genuchten

In this case it is considered a depth, Lz = 60 cm, time of 1200 s, and conditions of the
Dirichlet type. The conditions are described below.

ψ(z, 0) = −350.0 cm, 0 < z < Lz
ψ(0, t) = −10.0 cm, t > 0
ψ(Lz, t) = −350.0 cm, t > 0

(10)

Consider the values of the parameters of the problem, Ks = 6.2611 × 10−3, α =
2.80× 10−2, n = 2.239, m = 0.5534, θr = 0.029 and θs = 0.366.
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Figure 1: Solution for the soil moisture content with Nout = 150, Nint = 50 and ε = 0.2,
in the Luus-Jaakola method considering van Genuchten’s retention curve.

The values of the parameters obtained with the iterative procedure for the solution of
the inverse problem were α = 2.68748×10−2, n = 2.0140123 and m = 0.5034787, see Table
1. Statistical data that measures the accuracy and precision of the model are r2 = 0.989
and d = 0.997, very close to the ideal value 1, and the square root of the residue was
0.0521, [12]. Figure 1 shows the soil moisture content based on the parameters obtained
by the Luus-Jaakola method for the van Genuchten retention curve.

Table 1: Parameters of the van Genuchten’s retention curve.

α n m

van Genuchten parameters 2.80× 10−2 2.239 0.5534

LJ parameters 2.68748× 10−2 2.0140123 0.5034787

4.2 Test case 02 - Haverkamp

In this case it is considered a depth, Lz = 100 cm, time of 0.8h, and conditions of the
Dirichlet type. The conditions are described below.

ψ(z, 0) = −61.50 cm, 0 < z < Lz
ψ(0, t) = −20.73 cm, t > 0
ψ(Lz, t) = −61.50 cm, t > 0

(11)

Consider the values of the parameters of the problem, Ks = 9.44×10−3, A = 1.19×106,
φ = 4.74, B = 1.611× 106, λ = 3.96, θr = 0.075 and θs = 0.287.

The inverse problem was solved to obtain four parameters: A, B, λ and φ. Simulations
were performed with various values for Nout and Nint. The best configuration was for
Nout = 200 and Nint = 25. Figure 2 shows the soil moisture content based on the
parameters obtained by the Luus-Jaakola method, see Table 2, for Haverkamp’s retention
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curve. Good results were obtained, whose statistical indixes are r2 = 0.995 and d = 0.990,
[12].

Figure 2: Solution for the soil moisture content with Nout = 200, Nint = 25 and ε = 0.2,
in the Luus-Jaakola Method, considering Haverkamp’s retention curve.

Table 2: Parameters of the Haverkamp’s retention curve.

B λ A φ

Haverkamp parameters 1.611× 106 3.96 1.19× 106 4.74
LJ parameters 1.141× 106 3.93 1.98× 106 4.92

5 Conclusions

The Luus-Jaakola’s method yielded good results, as can be observed in the statistical
data presented, as well as in the moisture content profiles. Being the Luus-Jaakola a
probabilistic method, there is always the possibility of not returning the expected values,
as happened with test cases with small values for Nout and Nint. As future work it will
be considered the implementation of the modified Luus-Jaakola’s method, [5], in order to
compare the error and reduce the computational time.
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