Trabalho apresentado no XXXIX CNMAC, Uberlândia - MG, 2019.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Redução do Mecanismo de Reações para Fluxos Quimicamente Não-Equilibrados em Tubeiras Supersônicas

A. P. Spilimbergo¹

Departamento de Ciências Exatas e Engenharias, UNIJUÍ, Ijuí, RS V. G. Krioukov² e R. L. Iskhakova³ Department of Automobile Engines and Service, KNITU-KAI, Kazan, Rússia

Resumo. Atualmente, o cálculo de fluxos quimicamente não-equilibrados em tubeiras é baseado na cinética química detalhada. Neste trabalho propõem-se o procedimento de redução dos mecanismos de reações que é constituído pelos métodos DRGEP e de Engajamento. Este procedimento foi aplicado ao problema do cálculo de fluxos não-equilibrados dos produtos de combustão dos bipropelentes: "Querosene + O2" e " $N_2O_4 + C_2H_8N_2$ ". Como resultado foi atingida uma redução significativa do mecanismo inicial de reações com pequenos erros na previsão das características de fluxos.

Palavras-chave. Tubeira Supersônica, Redução de Mecanismo, Cinética Química.

1 Introdução

O cálculo dos processos quimicamente não-equilibrados em tubeiras supersônicas é um problema tradicional, e o interesse neste problema não diminui devido a pesquisas de novos propelentes e de desenvolvimento de novos esquemas de motores de foguetes [2, 5]. Atualmente, os modelos matemáticos desses fluxos baseiam-se na cinética química detalhada. Os mecanismos das transformações químicas (usados nessa abordagem) são constituídos por muitas reações (100 ou mais), o que leva a um grande volume de cálculo. Mas, ao mesmo tempo a maioria das reações influi minimamente nas características de combustão e para determinar tais reações desenvolvem-se vários métodos de redução: métodos de análise das velocidades das reações [7, 8]; métodos que utilizam autovalores [6, 7]; métodos que operam com dados preliminarmente tabulados [4, 6], etc. Mas, todos estes métodos (e suas combinações) são aplicados somente em esquemas simples de combustão: "Batch Reactor" (BR), "Perfectly Stirred Reactor" (PSR), "Plug Flow Reactor" (PFR). Neste trabalho o algoritmo proposto em [6] é aplicado a tubeira supersônica (cujo esquema de combustão é mais complexo).

Para tubeiras o problema de redução do mecanismo tem as seguintes particularidades:

¹patspi@unijui.edu.br

²vkrujkov@mail.ru

³vkrujkov@kai.ru

 $\mathbf{2}$

- na entrada da tubeira o meio reagente é quimicamente equilibrado e após, a medida que ocorre o movimento, a composição é alterada de acordo com o mecanismo de reações;

- a característica mais importante do fluxo não-equilibrado é o coeficiente de perda do impulso específico devido ao desequilíbrio químico (ξ_{dq}) , e com a redução do mecanismo o erro deste coeficiente deve permanecer minimal.

2 Técnica de Cálculo do Fluxo Não-Equilibrado e o Algoritmo de Redução

O fluxo unidimensional não-equilibrado é descrito pelas equações [4] a seguir. (a) Equação da Cinética Química, na forma exponencial:

$$\frac{d\gamma_i}{dx} = \frac{1}{V_g} \left(-e^{\gamma_i} \sum_j \nu_{ij} \Omega_j + \sum_q \sum_j \nu_{qj} \Omega_j \right) \equiv f_i^{\gamma}$$
(1)

$$\Omega_{j} = k_{j} \left(\frac{P}{R_{o}T}\right)^{\overline{m}_{j}} exp\left(-\sum_{p} n_{pj}\gamma_{p}\right); \quad \overline{m}_{j} = m_{j} + \Sigma n_{pj} - 1; \quad \gamma_{i} = -lnr_{i};$$
$$\nu_{ij} = \nu_{is}^{''} - \nu_{is}^{'}; \quad n_{ij} = \nu_{is}^{'}; \quad j = s; \quad s = 1, ..., m_{c}$$
(2)

$$\nu_{ij} = \nu'_{is} - \nu''_{is}; \quad n_{ij} = \nu''_{is}; \quad j = s + m_c; \quad s = 1, ..., m_c$$
(3)

com $i, p, q = 1, ..., n_c$; $j = 1, ..., 2m_c \in \nu'_{is}$ coeficientes estequiométricos no conjunto de reações reversíveis:

$$\sum_{i} \nu'_{is} B_i \iff \sum_{i} \nu''_{is} B_i; \qquad s = 1, ..., m_c$$
(4)

onde B_i é o símbolo da *i*-ésima substância; m_j é o índice de participação na *j*-ésima reação da partícula catalítica M ($m_j = 1$ se a partícula M participa na *j*-ésima reação e $m_j = 0$ de maneira oposta); k_j é a constante de velocidade da *j*-ésima reação ; n_c e m_c correspondem ao número de espécies e reações no meio reagente; R_o a constante universal de gás; P a pressão e T a temperatura.

(b) Equação do Movimento e da Energia:

$$\frac{dV_g}{dx} = \frac{R_o T}{V_g \sum_i r_i \mu_i} \varphi'(x); \qquad h_{oc} - \frac{V_g^2}{2} = \frac{\sum_i H_i r_i}{\sum_i r_i \mu_i}$$
(5)

onde: h_{oc} é a entalpia mássica na entrada da tubeira; V_g a velocidade do gás; r_i , $\mu_i \in H_i$ são fração molar, massa molecular e entalpia molar da *i*-ésima substância. (c) Equação da Dependência P = P(x):

$$\varphi(x) = -\ln(P/P_{oc}) \tag{6}$$

onde P_{oc} é a pressão na entrada da tubeira.

A Figura 1 mostra a alteração geral das características do fluxo ao longo da tubeira, onde: 1 - câmara de combustão; 2 - tubeira; oc - índice da secção de entrada; M - índice da secção mínima e a - saída da tubeira.

Figura 1: Alteração das características V_g , $T \in P$ ao longo da tubeira [1].

Para determinar o coeficiente ξ_{dq} é necessário aplicar modelos de fluxo quimicamente equilibrado, que são amplamente conhecidos [1] e fluxo quimicamente não-equilibrado apresentado pelas Eq.(1)-(6). Depois disso, é necessário calcular os impulsos específicos: de equilíbrio (I_1^{es}) e de não-equilíbrio (I_2^{es}) por (7).

$$I_z^{es} = V_{gza} + P_{za} / (\rho_{za} V_{gza}); \qquad z = 1;2$$
(7)

onde V_{gza} é a velocidade; P_{za} a pressão e ρ_{za} a densidade dos produtos de combustão na saída da tubeira e, em seguida, encontrar o coeficiente de perda do impulso específico dado em (8).

$$\xi_{dq} = (I_1^{es} - I_2^{es}) / I_1^{es} \tag{8}$$

O algoritmo de redução do mecanismos de reações utiliza as seguintes etapas:

- inicialmente constitui-se o mecanismo original (ou *C*-mecanismo) de reações, que deve ser reduzido, também é necessário definir a área de variação dos parâmetros envolvidos no mecanismo de redução;

- o mecanismo de redução para um ponto dos parâmetros é chamado local (L-mecanismo) e para uma área de alteração dos parâmetros é indicado por G-mecanismo. Geralmente o G-mecanismo é formado pelo acoplamento dos L-mecanismos;

- especificação de um conjunto de substâncias prescritas que durante a redução não podem ser removidas do mecanismo diferentemente de outras substâncias (sondadas);

- escolha dos indicadores de redução (limiares) e para cada método usado no algoritmo é definido o seu próprio limiar. Quanto maior o valor do limiar, maior será o grau da redução do mecanismo original, mas também maior o erro de cálculo (previsão).

Em [8] foi apresentado o algoritmo que é constituído pelo método DRGEP (Directed Relation Graph Error Propagation) [7] e pelo método de Engajamento [8]. Diferentemente de outros algoritmos de redução [3, 6, 7, 9] esse procedimento requer um pequeno volume computacional e reduz efetivamente o mecanismo original.

3 Exemplos de Redução dos Mecanismo de Reações para os Fluxos em Tubeiras

Para a validação do procedimento proposto foram formados G-mecanismos para tubeiras perfiladas para a seguinte área de alteração dos parâmetros:

$$\alpha_{ox} = 0.7, ..., 1.2; \quad P_{oc} = 20, ..., 100 atm \quad r_M = 0.006, ..., 0.06m$$
(9)

onde α_{ox} é o coeficiente de excesso do oxidante e r_M o raio da seção mínima da tubeira. A) Bipropelente "Querosene+ O_2 ". O mecanismo inicial foi constituído por 16 substâncias e 47 reações, retiradas de [3]. Foram selecionadas como substâncias prescritas: CO_2 , O_2 , H_2O e CO. Inicialmente, no regime de fluxo com parâmetros: $\alpha_{ox} = 1.0$; $P_{oc} = 20atm$; $r_M = 0.006m$ (regime básico) foram estabelecidos os limiares ζ_d (para o método DRGEP) e ζ_{ao} (para o método de Engajamento) para toda área de abrangência do G-mecanismo, conforme (9). A redução significativa do mecanismo inicial é alcançada já para pequenos limiares $\zeta_L \leq 0.02$ (Tabela 1) e no L-mecanismo permanecem 9 substâncias: $H, H_2, O,$ O_2, CO_2, H_2O, CO, OH e HCO.

Tabela 1: Características do fluxo na saída da tubeira (regime básico) em função dos limiares.

Mecanismo	$B_i(L)$	$R_f(L)$	$T_a(^{o}K)$	CO_2	O_2	H_2O	CO	$\xi_{X_M}(\%)$
C-mecanismo	16	47	1515	0.2875	0.0933	0.3447	0.1577	5.213
$\zeta_L = 0.01$	9	13	1515	0.2875	0.0933	0.3447	0.1577	5.215
$\zeta_L = 0.02$	9	13	1515	0.2875	0.0933	0.3447	0.1577	5.215
$\zeta_L = 0.04$	8	10	1501	0.2859	0.0941	0.3435	0.1583	5.329

Para a Tabela 1 foi considerado que $\zeta_d = \zeta_{ao} = \zeta_L$, que as concentrações das substâncias são dadas em frações molares e que $B_i(L) \in R_f(L)$ correspondem ao número de substâncias e reações nos *L*-mecanismos, respectivamente.

Ao longo do comprimento da tubeira os erros também são quase invisíveis, como pode ser visto na Fig. 2. Assim, o limiar $\zeta_G = \zeta_L = 0.02$ foi estabelecido para outros regimes de fluxos não-equilibrados. Depois foram selecionados cerca de 40 pontos { α_{ox} ; P_{oc} ; r_M } na área (9) e para cada ponto foi realizado o cálculo do fluxo supersônico e foi gerado um *L*-mecanismo. Alguns resultados para esses mecanismos são mostrados na Tabela 2, onde: $T_a(C)$, $T_a(L)$, $\xi_{dq}(C) \in \xi_{dq}(L)$ são características na saída de tubeira obtidas pelo *C*-mecanismo e pelo *L*-mecanismo. Nas colunas de 2 a 7 são dadas as características do *L*-mecanismo para os pontos $P_{oc} = 20atm$; $r_M = 0.006m$, sendo α_{ox} variando de 0.7 a 1.2 com passo $\Delta \alpha_{ox} = 0.1$, e nas colunas 8 e 9 estão mostradas as mesmas características para os pontos:

$$P1 = \{\alpha_{ox} = 1.0; \quad P_{oc} = 100atm; \quad r_M = 0.006m\}$$
$$P2 = \{\alpha_{ox} = 1.0; \quad P_{oc} = 100atm \quad e \quad r_M = 0.06m\}$$

Como pode ser visto cada *L*-mecanismo contém 9 substâncias acima mencionadas, mas com diferentes números de reações (de 11 a 14 reações). A temperatura de saída da tubeira

Figura 2: Alteração da composição e da temperatura ao longo da tubeira (regime básico) para o C-mecanismo (•) e L-mecanismo ($\zeta_L = 0.02$) para o bipropelente "Querosene + O_2 ".

Tabela 2: Comparação das características dos fluxos para os produtos de combustão do bipropelente "Querosene + O_2 ", utilizando C e L mecanismos ($\zeta_G = 0.02$).

	$P_{oc} = 20atm; r_M = 0.006m$					(P1)	(P2)	
α_{ox}	0.7	0.8	0.9	1.0	1.1	1.2	1.0	1.0
$B_i(L)$	9	9	9	9	9	9	9	9
$R_f(L)$	11	12	13	13	14	12	13	11
$T_a(C)^o K$	1258	1436	1509	1515	1493	1461	1850	2055
$T_a(L)^o K$	1258	1435	1510	1515	1493	1461	1851	2055
$\xi_{dq}(C)\%$	2.372	4.119	5.037	5.213	5.310	5.335	2.362	1.080
$\xi_{dq}(L)\%$	2.383	4.163	4.983	5.215	5.261	5.354	2.369	1.080

 $T_a(L)$ é prevista com erro muito pequeno. Conjugando todos os L-mecanismos gerados, obtém-se o G-mecanismo reduzido (Tabela 3) para toda a área (9).

De acordo com a regra: "O volume de cálculo é proporcional ao número de reações e ao cubo do número de substâncias" [6, 9], pode ser estimado o indicador da relação dos volumes computacionais entre C e G mecanismos:

$$\eta(G,C) = \frac{Volume(C)}{Volume(G)} = \left(\frac{47}{15}\right) \times \left(\frac{16}{9}\right)^3 \approx 17.6\tag{10}$$

B) Bipropelente " $N_2O_4+C_2H_8N_2$ ". Este sistema reagente é mais complexo e as substâncias prescritas foram: CO_2 , O_2 , H_2O , CO e N_2 . O mecanismo original foi constituído por 26 substâncias e 80 reações, retiradas de [3]. Inicialmente de acordo com os resultados dos cálculos para o regime básico (por analogia com o exemplo A) foram estabelecidos limitares $\zeta_G = \zeta_L = \zeta_d = \zeta_{ao} = 0.02$ para toda área que abrange o G-mecanismo.

A formação do G-mecanismo foi realizada para a mesma área (9) de alterações dos parâmetros: α_{ox} , $P_{oc} \in r_M$. Para isso foram selecionados 40 pontos { α_{ox} , P_{oc} , r_M } e para

5

D ~	D ~	~ 1					
bipropelente "Querosene + O_2 " para a área (9) ($\zeta_G = 0.02$).							
Tabela 3: G-mecanismo para prever as características dos fluxos dos produtos de combustão do							

Reação	Reação	Reação
$H_2 + OH = H_2O + H$	$2O + M = O_2 + M$	$CO + O + M = CO_2 + M$
$O + H_2 = OH + H$	$H + M + OH = H_2O + M$	$CO_2 + H_2 = OH + HCO$
$H + O_2 = OH + O$	O + H + M = OH + M	$CO_2 + H = O + HCO$
$2OH = H_2O + O$	$CO + O_2 = CO_2 + O$	HCO + M = H + CO + M
$2H + M = H_2 + M$	$CO + OH = CO_2 + H$	$HCO + H = CO + H_2$

cada um deles foi gerado um L-mecanismo.

Conjugando todos os L-mecanismos foi formado um G-mecanismo, constituído por 27 reações mostradas na Tabela 4 e pelas substâncias: $H, H_2, O, O_2, CO_2, H_2O, CO, OH$, $N, N_2, NO, NH, HCO, HNO \in N_2O.$

Tabela 4: G-mecanismo para prever as características dos fluxos dos produtos de combustão do bipropelente " $N_2O_4 + C_2H_8N_2$ " para a área (9) ($\zeta_G = 0.02$).

Reação	Reação	Reação
$H_2 + OH = H_2O + H$	$CO_2 + H_2 = OH + HCO$	$HNO + OH = NO + H_2O$
$O + H_2 = OH + H$	$CO_2 + H = O + HCO$	N + OH = NO + H
$H + O_2 = OH + O$	HCO + M = H + CO + M	$N_2O + H = N_2 + OH$
$2OH = H_2O + O$	$HCO + H = CO + H_2$	$HNO + H = H_2 + NO$
$2H + M = H_2 + M$	$CO + O + M = CO_2 + M$	$NH + NO = N_2O + H$
$2O + M = O_2 + M$	$N + NO = N_2 + O$	$NH + O_2 = HNO + O$
$H + M + OH = H_2O + M$	$N + O_2 = NO + O$	HNO + M = H + NO + M
O + H + M = OH + M	$NH + H = N + H_2$	$NH + OH = N + H_2O$
$CO + OH = CO_2 + H$	$N_2O + M = N_2 + O + M$	NH + OH = HNO + H

Conclusões 4

1. Neste trabalho foi proposto um procedimento para reduzir o mecanismo original (redundante) a um tamanho aceitável, fornecendo, na previsão das características do fluxo em tubeiras supersônicas, um erro controlado.

2. Este procedimento que contém os métodos DRGEP e de Engajamento, foi introduzido no código de cálculo dos processos quimicamente não-equilibrados em tubeiras.

3. Aplicando este procedimento para uma ampla área de alterações dos parâmetros ($\alpha_{ox} =$ $0.7, ..., 1.2; P_{oc} = 20, ..., 100 atm; r_M = 0.006, ..., 0.06m)$ for mobility of seguintes Gmecanismos (com pequenos erros nas caraterísticas do fluxo):

 - para o bipropelente "Querosene + O_2 " o mecanismo de combustão foi reduzido de 47 reações e 16 substâncias para 15 reações e 9 substâncias; (com $\eta(G, C) \approx 17.6$);

- para o bipropelente " $N_2O_4 + C_2H_8N_2$ " o mecanismo de combustão foi reduzido de 80 reações e 26 substâncias para 27 reações e 15 substâncias, (com $\eta(G, C) \approx 15.4$).

Agradecimentos

Os autores agradecem ao Fundo de Pesquisas Fundamentais Russo (RFFI) e República do Tatarstan (projeto N^o 15-48-02454 /2017) pelo apoio financeiro.

Referências

- V. E. Alemassov, A. F. Dregalin, A. P. Tishin, V. A. Khudiakov and V. N. Kostin. *Thermodynamic and Thermophysical Properties of Combustion Products*. VINITI, Moscow, 1971.
- [2] E. A. Barbour and R. K. Hanson. Chemical nonequilibrium, heat transfer, and friction in a detonation tube with nozzles, *Journal of Propulsion and Power*, 26:230–239, 2010.
- [3] P. Glarborg, J. A. Miller and R. J. Kee. Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors, *Combustion and Flame*, 65:177–202, 1986.
- [4] V. G. Krioukov, A. L. Abdullin and A. V. Demin. Difference schemes in computations for chemically non-equilibrium processes in the nozzles of rocket engines, *Russian Aeronautica*, 1:98–103, 2017.
- [5] C. K. Law. Fuel options for next-generation chemical propulsion, AIAA Journal, 50:19–36, 2012.
- [6] A. V. Lebedev, M. V. Okun' and A. E. Baranov. Simplification of kinetic mechanisms of physicochemical processes on the basis of combined mathematical methods, *Chemical Physics and mMzoskopija*, 13:43–52, 2011.
- [7] P. Pepiot-Desjardins and H. Pitsch. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, *Combustion and Flame*,154:67–81, 2008.
- [8] A. P. Spilimbergo, V. G. Krioukov and M. V. Nicandrova. Reduction of reaction mechanism by methods of DRGEP and of engagement. In Anais do Congresso Nacional de Matemática Aplicada e Computacional (XXVII CNMAC), São José dos Campos, São Paulo, Brasil, 2017.
- [9] L. Tianfeng, J. Yiguang and C. K. Lam. Complex CSP for chemistry reduction and analysis, *Combustion and Flame*, 126:1445-1455, 2001.