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Dynamics of a class of strongly non-linear mechanical systems
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Abstract. The aim of this work is to investigate the existence, stability and, bifurcations of
periodic orbits of a strongly non-linear non-ideal mechanical problem. We have rigorously
obtained the existence of periodic orbits as well as a couple of inequalities that control their
stability. From these results, two new mechanical effects are obtained.
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1 Introduction

In the literature on non-ideal problems, see for example [1], only weakly non-linear
problems are approached. A rigorous approach to the dynamics of a weakly non-linear
non-ideal problem was performed in [2]. In that paper existence, stability and bifurcations
of periodic orbits, which leads to Sommerfeld Effect, were investigated. The mechanical
system given in [2] is a special one, the centrifugal vibrator, but it is quite representative
of all area of non-ideal mechanical problems, see [5, Ch.2]. Our goal in this work is to
investigate the same questions for this mechanical system when the system is formulated
as a strongly non-linear problem. This means that the unperturbed system, which is
obtained when ǫ = 0, is a non-linear one, see (3). It must be emphasized the existence
result given in Section 3 is a dimensionless formulation of that one given in [3]. Anyway, it
is necessary to repeat it here. We have rigorously obtained the existence of periodic orbits
as well as a couple of inequalities which governs their stability. Such inequalities are the
main mathematical result of this paper. From them, one gets two interesting mechanical
effects: a) Jump Phenomenon, b) Strong dissipation-induced instability. For a), in the
weakly non-linear system there is the Sommerfeld Effect, see [1,2], but there is a transient
regime involved in. For the present case there is no transient regime. For b) there is
some similarity with dissipation-induced instability, see [6]. However, there are profound
differences between the two cases. The details are in Section 5. Along with this research,
it was necessary to do massive symbolic computations, which were performed by the CAS
Maxima, http://maxima.sourceforge.net/.
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2 A Mechanical Problem

We consider a mechanical system excited by a DC motor with limited supply power,
which base is supported on a spring. Besides, the DC motor rotates a small mass m,
Figure 1. This mechanism is known as centrifugal vibrator.
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Figure 1: Centrifugal Vibrator

The mathematical model is given by the following system:

m1x
′′ + βx′ + c x+ dx3 = mrϕ′2 cosϕ+mrϕ′′ sinϕ,

Iϕ′′ = M(ϕ′) +mrx′′ sinϕ+mgr sinϕ
(1)

where m1 = m0 +m and m0 denotes the mass of the DC motor. The constant c is the
stiffness of the spring. And d is the elasticity coefficient that describes how much the
behavior of the spring moves away from the linear case. Let P0 be the equilibrium point
of the nonlinear spring under the weight m1. And x denotes the displacement of m1 from
P0. The resistance of the oscillatory motion is a linear force β x′.

For the remainder of this paper, we consider all constants that appear in equation (1)
strictly positive. We will denote by r the distance between the mass m and the axis of
rotation of the DC motor. J and mr2 are the moments of inertia of the rotating parts
of the DC motor and the rotating mass m, respectively. Therefore, the total moment of
inertia of the system is given by I = J +mr2. Furthermore, g denotes the acceleration of
gravity. The function M (·) is the difference between the driving torque, or characteristic,
L (·) of the source of energy (motor) and the resistive torque H (·) applied to the rotor. It
is assumed that L (0) > 0, ∂L

∂ϕ′ 6 0, and limϕ′→∞H (ϕ′) = ∞. For details see [5, pg.16-18].
Such functions L (·) , H (·) are obtained from experiments. In this paper we call M (·) the
total torque. Moreover, take for granted that ϕ′ > 0.

We can rewrite the equations of motion (1) as a dimensionless first order system. Take

x1 (t) = x (t) , x2(t) = x′ (t) , x3 (t) = ϕ (t) , x4 (t) = ϕ′ (t) ,

s =
√
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m1 s√
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)
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√
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,

y3 (s) = x3
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√
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d r2
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β√
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I
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d r I
.

(2)
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Observe that a4 + a5 = 1. Moreover, let us introduce a small parameter ǫ in the dimen-
sionless parameters and total torque. From the heuristic point of view if c, β,m are small
then the dimensionless parameters ai, i 6= 4 in (2) are small too. So, let us substitute
ai, i 6= 4 by ǫai, a4 by 1− ǫa5 and M1 by ǫM1. Thus, performing such substitutions into
(1) and using (2), one gets

y′1 (s) = y2 (s) ,

y′2 (s) = −y1 (s)
3 + ǫ

(

a3 y4 (s)
2 cos (y3 (s))− a2 y2 (s)− a1 y1 (s)

)

+O
(

ǫ2
)

,

y′3 (s) = y4 (s) ,

y′4 (s) = ǫ
(

M1 (y4 (s)) +
(

a6 − a5 y1 (s)
3
)

sin (y3 (s))
)

+O
(

ǫ2
)

.

(3)

Let us consider the following change of variables for (3),

y1 (s) = C (s) cn
(

D (s) , 1√
2

)

, y2 (s) = C (s)2 cn′
(

D (s) , 1√
2

)

(4)

where cn
(

·, 1/
√
2
)

denotes the jacobian cosine with modulus 1/
√
2, and k0 indicates its pe-

riod. For details see [9]. Hence the system (3) can be rewritten in the variables C,D, y3, y4.
Since this system is autonomous, by assuming y4 (s) 6= 0, one can perform the usual re-
duction of order in this last system. Such reduced system is a third order one and is
written in the variables C,D, y4 and the time variable is denoted by u. Now, let us use
the following change of variables D (u) = D1 (u) − k0 u

2π . So, one finally gets the following
time-dependent system

C
′
(u) = ǫ

2 y4(u)C(u)

(

a2 C (u)
2
(

cn4
(

2πD1(u)−k0 u
2π , 1√

2

)

− 1
)

−2 a1 C (u) cn′
(

2πD1(u)−k0 u
2π , 1√

2

)

cn
(

2πD1(u)−k0 u
2π , 1√

2

)

+2 a3 y4 (u)
2 cos (u) cn′

(

2πD1(u)−k0 u
2π , 1√

2

)

)

+O
(

ǫ2
)

D
′
1 (u) =

2π C(u)+k0 y4(u)
2π y4(u)

+ ǫ

y4(u)C(u)
2

(

a1C (u) cn2
(

2πD1(u)−k0 u
2π , 1√

2

)

+a2C (u)
2
cn′
(

2πD1(u)−k0 u
2π , 1√

2

)

cn
(

2πD1(u)−k0 u
2π , 1√

2

)

−a3 y4 (u)
2 cos (u) cn

(

2πD1(u)−k0 u
2 π , 1√

2

)

)

+O
(

ǫ2
)

y′4 (u) =
ǫ

y4(u)

(

a5 C (u)
3
sin (u) cn3

(

2πD1(u)−k0 u
2π , 1√

2

)

−M1 (y4 (u))− a6 sin (u)
)

+O
(

ǫ2
)

(5)

Note that (5) is 2π-periodic in the variable u.
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3 Existence of Periodic Orbits

Assume
∣

∣

∣

∣

k4
0
a2 cosh(π

2
)

3 2
9
2 π4 a3

∣

∣

∣

∣

< 1 (6)

and that

M1

(

−2π a
k0

)

= −k0 a2 a5 a
3

6π a3
(7)

has negative real roots. The signal of a is due to the condition ϕ′ > 0. In view of (6)
there is b such that

sin
(

2π b
k0

)

= −k4
0
a2 cosh(π

2
)

3 2
9
2 π4 a3

. (8)

By using the Poincaré Method, see [3], one gets that if

M ′
1

(

−2π a
k0

)

6= k2
0
a2 a5 a

2

4π2 a3
(9)

holds, then there are ǫ0 > 0 and C∞ functions a, b, c : (−ǫ0, ǫ0) → R with a (0) =
a, b (0) = b, c (0) = c where c = c

(

a, b
)

is a complicated function of a and b, such that
for all ǫ ∈ (−ǫ0, ǫ0) the solution of (5) with initial conditions C (0) = a (ǫ), D1 (0) = b (ǫ),
y4 (0) = −2πa

k0
+ ǫ c (ǫ) is a 2π-periodic orbit.

4 Stability of the Periodic Solution

From now on let us use the variable s instead of u for the time. Let us denote by z0 (·,ǫ)
the 2π-periodic solution of (5) which initial conditions are given in the Section 3. By using
Regular Perturbation Theory, one gets the expansion of this solution to any order of ǫ.
The computations are long but straightforward. The linearization of (5) at z0 (·,ǫ) leads
to the following system U′ (s) = A (s, ǫ) U (s) where U (s) = (U1 (s) , U2 (s) , U3 (s)) and
A : R × (−ǫ0, ǫ0) → L

(

R3,R3
)

is C∞ mapping and is 2π-periodic in the s variable. Of
course, one can use Regular Perturbation Theory here in order to compute an expansion of
the monodromy matrix in terms of ǫ. Thus let N (s, ǫ) be the the principal matrix solution
of the following matrix diferential equation N′ (s, ǫ) = A (s, ǫ) N (s, ǫ) The monodromy
matrix is the following one M (ǫ) = N (2π, ǫ). For oomputation of the eigenvalues of
M, consider the polynomial P (ǫ,X) = −det (M (ǫ)−X I). This polynomial has huge
coefficients, but after an extense computation, one gets

P(ǫ2,1+ǫ Y )
ǫ3

= Y 3 + c2 (ǫ) Y
2 + c1 (ǫ) Y + c0 (ǫ) . (10)

Let us denote by P1 (ǫ, Y ) the right hand-side of (10). One has that P1 (ǫ, Y ) = P1 (0, Y )+
ǫQ (ǫ, Y ), where Q is second degree polynomial in the variable Y . By assuming that

cos
(

2π b
k0

)

6= 0 the roots of P1 (0, Y ) are 0,±r1 where r1 = w1
√−w2�w3, w1 = 2

7

4 π
3

2 ,
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w2 =
(

k20 a5 a
2 + 4π2 a3

)

cos
(

2π b
k0

)

�a, w3 = k
3

2

0

√

cosh
(

π
2

)

. Here the Implicit Function

Theorem can be applied to this polynomial and one gets expansions of the roots to any
order in ǫ. For the root 0 in P1 (0, Y ) = 0, the corresponding root of P1 (ǫ, Y ) is denoted
by Y (ǫ) and Y (0) = 0. It follows from (10) that X1 real (ǫ) = 1+

√
ǫ Y (

√
ǫ) is the root of

P (ǫ,X) = 0 such that X1 real (0) = 1. From the expansion of Y (ǫ) one obtains

X1 real (ǫ) = 1− ǫ
4π2 k0 a3 M

′

1

(

− 2π a

k0

)

−k3
0
a2 a5 a

2

k2
0
a5 a

3+4π2 a3 a
+O

(

ǫ
3

2

)

. (11)

For the roots ±r1 one has to take into account two cases:

cos
(

2π b

k0

)

a
< 0, (12)

cos
(

2π b

k0

)

a
> 0. (13)

If (12) holds and using the same way for the obtaining of (11), one gets two real roots
given by X2 real (ǫ) = 1 − r1

√
ǫ + O (ǫ), X3 real (ǫ) = 1 + r1

√
ǫ + O (ǫ). If (13) holds,

one has two conjugated complex roots denoted by X2 complex (ǫ), X3 complex (ǫ) respectively
such that

|X2 complex (ǫ) |2 = 1− ǫ

(

k0

(

k2
0
a5 a

2 M ′

1

(

− 2π a

k0

)

−4π2 a2 a3

)

a (k20 a5 a
2+4π2 a3)

)

+O
(

ǫ
3

2

)

. (14)

Then, if (12) holds and since X3 real (ǫ) > 1, it follows from [4, Th.3.1,pg.157] that the
periodic orbit z0 (·,ǫ) is unstable. If (13) holds one gets from (11) and (14) that if

4π2 a3 M
′

1

(

− 2π a

k0

)

−k2
0
a2 a5 a

2

a
> 0 and

k2
0
a5 a

2 M ′

1

(

− 2π a

k0

)

−4π2 a2 a3

a
> 0 (15)

then |X1 real (ǫ) | < 1, |X2 complex (ǫ) | = |X3 complex (ǫ) | < 1 so the periodic orbit z0 (·,ǫ)
is asymptotically stable. The proof of this result is exactly the same as for the unstable
case. By using the same argument, one has if

4π2 a3 M
′

1

(

− 2π a

k0

)

−k2
0
a2 a5 a

2

a
< 0 or

k2
0
a5 a

2 M ′

1

(

− 2π a

k0

)

−4π2 a2 a3

a
< 0 (16)

one gets |X1 real (ǫ) | > 1, or |X2 complex (ǫ) | = |X3 complex (ǫ) | > 1 then z0 (·,ǫ) is an
unstable periodic orbit. Summing up our main result on stability is the following one:

Theorem 4.1. Let z0 (·,ǫ) be the 2π-periodic orbit of (5) obtained in Section 3.

a) If (12) holds the periodic orbit z0 (·,ǫ) is unstable.

b) If (13), (15) hold the periodic orbit z0 (·,ǫ) is asymptotically stable.

c) If (13), (16) hold the periodic orbit z0 (·,ǫ) is unstable.
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5 Some Mechanical Effects

In this section, two physical effects are obtained from the use of Theorem 4.1. These
are the following ones: a) Jump Phenomenon, b) Strong dissipation-induced instability.
Due to the lack of space, only a sketch of these results is given.
a) The Jump Phenomenon
In (5) let us rewrite a2 in terms of b by using (8). Of course, it is assumed that (6) holds.
Note that the parameter a2 is determined by the dissipation, see (2). Observe the initial
conditions of the periodic orbit obtained for (5) are given at the end of Section 3 and are
the following ones C (0) = a (ǫ), D1 (0) = b (ǫ), y4 (0) = −2πa

k0
+ ǫc (ǫ), where b (0) = b. So,

the zero order term of the second initial of the periodic orbit, obtained in Section 3, is a

parameter of the system (5). Since sin
(

2π b
k0

)

< 0 one obtains b ∈
(

k0
2 ,

3 k0
4

)

∪
(

3 k0
4 , k0

)

.

By using the change of variables (4), the dimensionless parameters given at (2), and

Theorem 4.1 one concludes that if b ∈
(

k0
2 ,

3 k0
4

)

the periodic orbit is stable and one has

x (0) > 0, x′ (0) > 0. And if b ∈
(

3 k0
4 , k0

)

the periodic orbit is unstable and one has

x (0) < 0, x′ (0) > 0. So, when b ∈
(

k0
2 ,

3 k0
4

)

and M ′
1

(

−2π a
k0

)

is adequately small, the

periodic orbit is stable and the centrifugal vibrator is placed above of the equilibrium of

the nonlinear spring. If b ∈
(

3 k0
4 , k0

)

there is instability of the periodic orbit and the

centrifugal vibrator suffers a jump and is replaced in a position below of the equilibrium
of the nonlinear spring.

Consider the linearization of (5) at the periodic orbit z0 (·,ǫ). By taking into account
the parameter b in the linearized equation one has U′ (s) = A

(

s, ǫ, b
)

U (s). In view of [8,

Theorem 12,pg.146] the last system is equivalent to V′ (s) = B1

(

ǫ, b
)

V (s) whereB1

(

ǫ, b
)

is a real matrix. For b ∈
(

k0
2 ,

3 k0
4

)

, in view of Theorem 4.1, all characteristic multipliers

have norm lesser than 1. So, the correspondent characteristic exponents have negative real

part. For b ∈
(

3 k0
4 , k0

)

and proceeding analogously as in the previous argument, there

is a real characteristic multiplier which norm is greater than 1. Hence the correspondent
characteristic exponent has positive real part. Since B1

(

ǫ, b
)

is a differentiable function

of b, then B1 has the eigenvalue zero at b = 3 k0
4 . This bifurcation is called a fold one,

see [7, pg.80]. As an example, take the following total torque M1 (x) = A − B x where
A > 0 andB > 0. From above argument one concludes the existence of a fold bifurcation
for this total torque.
b) A case of Strong dissipation-induced instability
Consider the following total torque M1 (x) = −x3 + x2 − C x + C, where C is a positive

constant, L (x) = −x3 + x2 + C, H (x) = C x. Assume that b ∈
(

k0
2 ,

3 k0
4

)

. It can be

proved that if a2 is near 0 then the orbit is stable, but if a3 << 1, 1− a5 << 1, and

a2 is near of its maximum value, given by 3 2
9
2 π4 a3

k4
0
cosh(π

2
)
, then this periodic orbit is unstable.

This means, for this case, that an adequate increase of dissipation leads to instability. We
call it strong dissipation-induced instability. This counter-intuitive phenomenon is similar
to one known in the literature as dissipation-induced instability, see [6]. But there are
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some striking differences. In [6] the linearization is performed around equilibrium points.
Here we deal with periodic orbits. The systems involved in [6] are, in its beginning,
conservative ones. Here the system (5) is a dissipative one. In [6], an infinitesimal increase
of the dissipation of leads from a stable equilibrium point to an unstable one. In our case
the periodic orbit becomes unstable only after a finite amount of dissipation.

There is no common framework for both kinds of phenomena yet.

6 Conclusions

In this paper, the dynamics of a strongly non-linear non-ideal system, the centrifugal
vibrator, is investigated. We have gotten results on existence, stability, and bifurcations of
periodic orbits. From that two new mechanical phenomena are shown. The Sommerfeld
Effect, for this case, was not obtained as in the weakly non-linear case due to the absence
of a transient regime.

References

[1] J. M. Balthazar, D. T. Mook, H. I. Weber, R. M. L. R. F.Brasil, A. Fenili, D. Belato
and J. L. P. Felix. An overview on non-ideal vibrations, Meccanica, 38, 613-621, 2003.

[2] M.J.H. Dantas and J. M. Balthazar. On the existence and stability of periodic orbits
in non ideal problems: General results, Z. angew. Math. Phys. (ZAMP), 58,940-
958,2007.

[3] M.J.H. Dantas. Existence of periodic orbits for a strongly non-linear non-ideal prob-
lem, Proceeding Series of the Brazilian Society of Computational and Applied Math-
ematics, Vol. 5, N. 1, 010038, 2017. DOI: 10.5540/03.2017.005.01.0038

[4] J. Hale. Ordinary Differential Equations, Second Edition, Dover Publications, Mine-
ola, New York 2009.

[5] V. Kononenko. Vibrating Systems with Limited Power Supply, First Edition, Illife
Books, London, 1969.

[6] R.Krechetnikov and J.E. Marsden. Dissipation-induced instabilities in finite dimen-
sions, Rev. Mod. Phys., 79, 519-553, 2007.

[7] Y. A. Kuznetsov. Elements of Applied Bifurcation Theory, Second Edition, Springer,
New York, Berlin, 1998.

[8] R.S. Pontryagin. Ordinary Differential Equations, First Edition, Addison-Wesley,
Reading, Massashussets, 1962

[9] E.T. Whittaker and G.N.Watson. A course of Modern Analysis, Fourth Edition, Cam-
bridge University Press, Cambridge, 1973.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0375 010375-7 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0375

