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Abstract. We present the gradient descent algorithm for unconstrained minimization
problems using tools of the fractional calculus, a field of mathematics with applications
in widespread areas of science and engineering. At each iteration of the fractional order gra-
dient descent algorithm, the search direction is determined by means of fractional gradient,
being a new alternative to solve large scale minimization problems involving one useful class
of functions.
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1 Introduction

The gradient descent algorithm [1,3,11,21] has been employed for solving optimization
problems, being commonly used to minimize an error function in the research of artificial
neural networks [5–7, 19, 23], solve least-squares minimization problems involving phase
retrieval [4,10,14,16], learning algorithm of fuzzy system [12,18], logistic regression [2,15,
20], just to name a few.

The so-called fractional calculus was conceptualized in connection with the infinites-
imal calculus since 1695 [17]. Some of the areas of applications of fractional calculus
include viscoelasticity, signal processing, probability, statistics, electrochemistry, diffusion
in porous media, fluid flow, backpropagation training of neural networks, and so on [9,13].

Investigations of the fractional order gradient descent algorithm has shown interest,
for example, in learning of backpropagation neural networks, however, such investigations
began only recently [8,22]. Chen et al. [8] presented the fractional order gradient methods
(FOGMs) by writing the Riemann-Liouville and Caputo fractional derivatives as Taylor
series. Wang et al. [22] proposed a fractional gradient descent method, employing the
Caputo derivative, for the backpropagation training of neural networks.

We present a new fractional order gradient descent algorithm, in the Caputo sense,
by using a well-known particular property of this fractional operator for fractional deriva-
tive of powers function. We apply the fractional order gradient descent algorithm for
minimizing an objective function which is written in terms of a sum of powers of (x− a)µ.
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The paper is organized as follows. In Section 2 we describe the definition and a
particular property of the Caputo fractional derivative. The fractional version of the
gradient descent algorithm is reported in Section 3. In Section 4 some numerical results
and illustration of the fractional algorithm will be given and compared to the classical
algorithm.

2 Caputo fractional derivative

In this section we present the definition and a particular property of the Caputo frac-
tional derivative [13].

For the definition below,
(
CDα

a+f
)

(x) denotes Caputo left-sided fractional derivative
of order α > 0, with α /∈ N, of functions on a subset Ω = [a, b] of real axis R = (−∞,∞),
where f ∈ Cn [a, b] and3 n = [α] + 1.

(
CDα

a+f
)

(x) :=
1

Γ(n− α)

(∫ x

a

f (n) (τ)

(x− τ)1−n+α
dτ

)
, for x ∈ Ω, (1)

where

Γ (α) =

∫ ∞
0

tα−1e−tdt, (2)

is the Gamma function. In particular, Γ (n+ 1) = n! (n ∈ N).

If α = n ∈ N, then
(
CDn

a+f
)

(x) = f (n)(x).

Property 2.1. Let α > 0, with α /∈ N, and let n be given by n = [α]+1. Also let µ > −1,
then for x > a we have

CDα
a+(x− a)µ =


Γ(µ+ 1)

Γ(µ− α+ 1)
(x− a)µ−α, for µ > [α],

0, for µ = 0, 1, 2, ..., [α].
(3)

In particular, if µ = 0 and k is a constant, then
(
CDα

a+ k
)

(x) = 0.

Example 2.1. Consider the quadratic function ϕ1(x) = (x− 3)2. The fractional deriva-
tives of ϕ1, in terms of the Caputo fractional derivatives, in accordance with Property 2.1,
takes the form

CDα
3+ϕ1(x) =

2 (x− 3)2−α

Γ(3− α)
, for x > 3 and 0 < α < 2, (4)

and
CDα

3+ϕ1(x) = 0, for x > 3 and α > 2. (5)

3[µ] indicates the integer part of µ.
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3 Fractional order gradient descent algorithm

The simplest gradient descent algorithm is a line search method and can be used to
solve an unconstrained minimization problem of the form [11]:

minimize
x∈D

f (x) , (6)

where f : D ⊆ Rn → R is a convex funtion, defined and continuously differentiable on
open set D (neighborhood of the solution) in Rn.

The iterative fractional order gradient descent algorithm for solving equation (6) start
with an initialization x0 ∈ D, and inductively update by the following iteration

xk+1 = xk − ηk∇αf (xk) , (7)

where ηk > 0 is an appropriately chosen step size parameter, α > 0 and ∇α is a vector
whose components are partial fractional derivatives, determined by Property 2.1.

In the so-called fixed step size gradient descent algorithm, the step size ηk is fixed at
each iteration. However, to refine the iteration, we can choose the appropriate step size
ηk at kth iteration.

We define the fractional order gradient descent algorithm as described below.

Algorithm 1 Fractional order gradient descent algorithm

Input: x0, η0, ε, s
Output: xk
1: k ← 0
2: for k = 1, 2, . . . , s do
3: xk ← xk−1 − ηk−1∇αf (xk−1)
4: Update the step size ηk
5: k ← k + 1
6: if ‖∇f (xk)‖ < ε then
7: break
8: end if
9: end for

4 Numerical experiments

Here we present some numerical experiments through the use of Algorithm 1 in illustra-
tive examples. The numerical experiments were performed under Windows 10 and Matlab
(R2016a) running on a desktop with 2.20 GHz Intel Core i5-5200 central processing unit
(CPU) and 4G random-access memory (RAM).

We present our simulations for functions of the type:

ϕ(x) = (x− a)µ,

with fractional derivatives of order 0 < α < 2 and µ > [α].
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Example 4.1. We consider the quadratic function f(x) = (x− 3)2 and start with an
initialization x0 > 3. Thus, we set x0 = 5, η0 = 0.1, ε = 10−4 and s = 105.

The results of performance of Algorithm 1 with different fractional derivatives and fixed
step size are shown in Figure 1, where one can observe that the sequence {xk} converges
to the extreme point.
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Figure 1: Performance of the Algorithm 1 for the function f .

Number of iterations, errors of approximation and CPU times in milliseconds (ms)
consumed are shown below in Table 1.

Table 1: Numerical experiments for f with fractional order derivatives.

α Number of iterations Errors Times (ms)

0.8 171 4.772 · 10−5 3.663
0.9 88 4.335 · 10−5 3.375
1.0 49 3.568 · 10−5 3.322
1.1 30 1.608 · 10−5 3.288
1.2 20 2.598 · 10−5 3.280

These results imply the numerical Algorithm 1 perform well in the right neighborhood
around the point a = 3, that is the solution to the problem, when we consider 1 < α < 1.2.

In particular, when α = 1.3, the algorithm stopped after s = 105 iterations, i.e.,
the algorithm stopped due to achieves the maximum number of iterations. The error of
approximation was given by 1.425 · 10−4.
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Example 4.2. Now, we consider the minimizing of a function of 791 variables, given by

g (x1, x2, . . . , x791) =
791∑
i=1

(xi − ai)2 ,

where ai = 1+0.1(i−1). We start with an initialization x0 = (a1 + 2, a2 + 2, . . . , a791 + 2).
In this case, we set η0 = 0.1, ε = 10−4 and s = 105. Results of this simulation, with fixed
step size, are shown in Table 2.

Table 2: Numerical experiments for g with fractional order derivatives.

α Number of iterations Errors Times (ms)

0.8 308 9.950 · 10−5 37.932
0.9 129 9.565 · 10−5 16.178
1.0 61 8.620 · 10−5 6.349
1.1 33 5.193 · 10−5 5.995

When α = 1.2, the algorithm stopped after the maximum number of iterations and
the error of approximation was given by 5.961 · 10−4.

5 Conclusions

This paper has introduced a fractional approach to improve the classical gradient
descent algorithm for minimizing an objective function which is written in terms of a sum
of powers of (x− a)µ by using a well-known property for fractional derivatives of power
function. The comparative experimental results have been carried out between fractional
and classical versions of the algorithm. The fractional algorithm (α 6= 1) show a better
performance than the classical algorithm (α = 1). The future work would be to use
a modified version of the algorithm choosing the appropriate step size and changes the
fractional order along the method iterations.
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