
Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics

Supervised learning for boundary detection
on particle systems

Marcos Sandim 1

ICMC-USP
Afonso Paiva 2

ICMC-USP

Abstract. In particle-based physics simulations, the information about which particles
belong to the boundary of the system and which are considered internal is, in general, an
information that is useful but hard to obtain in an efficient way. This information can be
applied to generate the free surface of the fluid or to compute the surface tension, among
other applications. Techniques found in the literature may present satisfactory results, but
in general they are sensible to the problem scale, particle distribution and involve computa-
tionally expensive operations such as matrix inversion. The goal of this study is to present
an alternative with lower computational cost at runtime by transferring some of the work
to a preprocessing step using offline learning.
Keywords. computational geometry, supervised learning, particle systems

1 Introduction

The area of Computational Fluid Dynamics (CFD) has received attention for years
due to its application on many fields, ranging from industry to entertainment. Meshless
methods such as Smoothed Particle Hydrodynamics (SPH) [7], although very popular, still
have a series of problems with suboptimal solutions. One of these problems is the detection
of boundary particles [5, 10] This information is useful on other steps of a simulation
such as the pressure computation on incompressible simulations, which needs a boundary
condition to make its solution unique. Other uses are the application of surface tension,
and visualization of the free-surface of the fluid.

An interesting approach to this problem that hasn’t been explored on the Computer
Graphics or Computational Physics literature, is the use of Machine Learning (ML) to
solve a classification problem that separates the boundary particles from the internal
ones. During a simulation step using the SPH method, many intermediary attributes are
computed for each particle of the system, but in most cases they are discarded at the end
of the step. The main idea of this article is to use these attributes along with a few others

1sandim@icmc.usp.br
2apneto@icmc.usp.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 7, n. 1, 2020.

Trabalho apresentado no XXXIX CNMAC, Uberlândia - MG, 2019.

DOI: 10.5540/03.2020.007.01.0441 010441-1 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0441


2

that can be easily computed to build a feature vector that represents the particle and ML
to classify the particles. A recent study about this problem, using a different approach,
was made recently by Sandim et al. [10] and it can be used as a primer on the subject.

To successfully apply an supervised learning method a ground truth is needed, since
supervised learning methods need labels in its training phase. This ground truth is com-
puted trough a more complex and expensive method proposed by Dilts [5] which uses a
notion that can be interpreted as an ε-boundary definition that will be discussed ahead.
With the labels provided by Dilts’ method and feature vectors for a representative subset
of the data, we can train a classifier that can be applied to other particle systems with
similar characteristics.

2 Supervised learning

In a classification problem, supervised learning consists in feeding data with known
labels to an algorithm so it can learn a mapping between the data and the labels. This
mapping can then be used to assign labels to new data samples. In our case, the data comes
from a set of features computed for each particle and the labels are, at first, unknown. In
the next sections we’ll discuss in detail how we obtain both the data and the labels used
in the training step.

2.1 Feature vectors

During the simulation process of a particle system, most methods – like SPH – produce
a lot of data for each particle of the system. In many cases a lot of this data is discarded
at the end of the simulation step. This data is composed by some simple variables, like
the number of neighbors inside the influence radius of a particle, some are more complex:
the particle’s velocity, density or pressure, and derivatives (gradient, divergent, curl) of
some of them. Since the behavior of each particle is a result of these variables, we can use
them to create a feature vector that represent the particle.

Two points arise from the idea of using this data on a feature vector: which variables
are useful to separate the boundary from the interior, and how are they related to each
other. Variables that don’t carry any information about the surroundings of a particle
aren’t really useful when trying to separate the boundary of the system. The particle’s
position in Rn, for instance, describes its location in space but doesn’t say much about its
position relative to other particles or the system itself. On the other hand, information
that is derived from the surroundings of a particle are more useful for us. Particles on
the boundary, or near it, tend to have fewer neighbors, lower density, it’s density have a
larger gradient, and so on.

The problem with some of these variables is that they are highly correlated, which
makes them redundant. On Fig. 1 we show a correlation matrix created from a small
sample of the data that can be extracted from particles. This is very useful to help us
better understand this problem as it helps to identify and eliminate variables that add
little to no information.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0441 010441-2 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0441


3

Figure 1: Plot of the correlation matrix of the chosen features: (1) modulus of the gradient
of the density function, (2) divergence of the density function, (3) smallest eigenvalue of the
covariance matrix, (4) largest eigenvalue of the covariance matrix, (5) density function, (6) number
of neighbors inside influence radius.

For instance, the density of a particle in the SPH method uses a density estimator
based on the Parzen window [8] with an additional scale by the particle’s mass: ρi =∑

j∈Ni
mjWij . Here ρi represents the density of the particle i, Ni the set of the neighbors

(particles inside the influence radius) of i, mj is the mass of j and Wij is the value at the
position of j of a kernel function, usually the gaussian kernel, centered on i. If all the
particles have the same mass, it can be moved outside the summation and becomes just
a scale: ρi = m

∑
j∈Ni

Wij . Since the chosen features will be normalized in a further step,
this scale by the mass is useless and can be removed. This leaves us with a simple density
estimator based on the Parzen window, which is simpler and carries similar information.

The density function in the context of the SPH method is a bit noisy thanks to the
discretization used and the sum of kernel functions. This variation can be useful to identify
regions near the boundary of the system. The gradient of the density function is greater
near the boundaries of the system, so the modulus of the gradient of density function is
greater at the position of particles near or at the boundary of the system.

By using Principal Component Analysis (PCA) on the neighborhood of a particle, we
can differentiate between particles near the boundary as they have very different eigenval-
ues. Particles inside the system have roughly the same eigenvalues as their neighborhood
is evenly distributed around them.

The final set of features used to train a classifier capable of extracting the boundary
of a system are: the density function, the modulus of its gradient and divergence, the
number of neighboring particles inside the influence radius of the particle, and the smallest
and largest eigenvalues of the covariance matrix of the positions of the particles on the
neighborhood of each particle.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0441 010441-3 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0441


4

2.2 Ground truth and labels

A solid ground truth that can be used as labels for training is essential in training
and testing a classifier. Here we discuss how we use the method proposed by Dilts [5] to
generate the labels that we use.

Consider a point set P that represent the positions of particles in a system, this set
can be seen as a sampling of a closed region Ω that contains the system and has a surface
S = ∂Ω. As discussed by Sandim et al. [10], a boundary point of P is a point that lies
on S. Since it is quite hard to know if a point lies exactly on S, a more useful definition
takes into account the sampling density of the set, as proposed by Sandim et al.. By taking
into account the sampling density, Sandim et al. give the definition of ε-boundary points.
These definitions match the method proposed by Dilts, so we can use this method to
compute our labels. Albeit faster, the method proposed by Sandim et al. can’t be applied
here since it gives an approximation of the set of boundary particles of P.

By applying directly the arcs method from Dilts [5], we obtain a reliable set of labels
that follow the definitions given by Sandim et al. [10]. These labels can then be used by us
to train our classifier in order for it to identify ε-boundary particles, which will be called
only boundary particles for simplicity.

2.3 Training and testing

We chose to use a Support Vector Machine (SVM) classifier was used. This choice
was based on the fact that its training phase may be costly but the classifying phase has
linear complexity on the number of support vectors. This means that the majority of
the computational effort is moved to the training phase of the method, and allowing the
already trained classifier to be used inside the pipeline of a particle-based simulation.

The literature of Support Vector Machines dates back to 1964, with Vapnik and Cher-
vonenkis [11] first introducing the idea of statistical learning, which is the basis for the
SVM method. The SVM method itself was introduced by Boser et al. [2] and ,from then
on, many others extended the idea to adapt and use the SVM in different applications.

The training data is extracted from preprocessed SPH simulations, which contains the
necessary information to compute the feature vector for each particle. All steps of the sim-
ulations used in training and testing have their labels computed according to Section 2.2.
To build a training set that contains different cases from different configurations, we do
the sampling in two phases: sampling of the time steps of the simulation and sampling of
particles inside the sampled steps.

To sample the time steps of the simulation we use a random sampling of 30% of the
available steps to be used as training, leaving the other 70% to testing. From the training
steps we do a hold-out validation in which we chose again 30% of the particles from the
step to be used as training and leaving the rest to testing. Note that the 30% of the
particles chosen from a step are composed by roughly the same amount of internal and
boundary particles to ensure that both cases are properly represented in the training data.

With this partitioning scheme we use only 9% of the available data as training, but
if we consider that the total size of the datasets available from our SPH simulations are

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0441 010441-4 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0441


5

Figure 2: Sample steps from the training data.

often around 100 steps with 500 thousand particles each, adding up to a total of 50 million
different instances in a single simulation, the training set with 9% of this still has a total of
4.5 million samples. This training set is quite large and can be problematic to process in a
conventional workstation with 8GB of RAM. The use of Sequential Minimal Optimization
(SMO) to solve the optimization step of the SVM, proposed by Platt et al. [9], reduces
the memory needed during the training phase, since its memory requirements are linear
to the training set size. An extended version of the SMO was made by Fan et al. [6].

The training is made using the SVM implementation from LIBSVM [3], with an ex-
tended version of the SMO algorithm made by Fan et al. [6] and a Radial Basis Function
(RBF) kernel. The choice of the RBF kernel over a linear was based on the fact that the
groups are not linearly separable using the chosen features, preventing the convergence of
the SMO algorithm in an acceptable number of iterations. After the training phase, the
remaining data is used as testing and the confusion matrix is computed. Along with the
confusion matrix we plot the particle system with the labels from the ground truth and
the classifier’s results, this plot shows not just the number of correct or wrong cases but
also where they occur. The information of where the particles are classified on the wrong
group is useful to understand the effect of the chosen features on the classifier.

3 Results

The method was implemented using MATLAB, which uses LIBSVM as the back-end
for its SVM tools. The tests were run in a workstation equipped with an Intel® CoreTM i5-
3570 processor and 8GB of RAM. The data used was obtained from SPH simulations made
with DualSPHysics, which is an open source SPH simulation tool built and maintained by
Crespo et al. [4] and others. Another dataset is the single vortex spin by Bell et al. [1],
which is a common benchmark in the computational physics literature.

We trained a classifier using the information from the single vortex spin and a dam
break simulation. Both start with a well behaved distribution but evolve to configurations
with thin layers, sharp features, drops and holes. These features are fundamental to the
training since the feature vectors of the particles in these regions carry the information
needed to identify these structures. Fig. 2 shows a few steps of these datasets with the
mentioned features. It is important to include extreme cases in the training data, with
bad particle distribution, such as the tail of the system in the single vortex dataset. These
cases are the ones that push the classifier to its limit.

The results obtained with the training data are consistent, even between runs with
different partitioning of the data. This means that the partitioning scheme is successfully

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0441 010441-5 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0441


6

Table 1: Confusion matrix from the classification of the testing data.
Predicted class

Internal Boundary

Actual class Internal 562,246 14,813
Boundary 1,600 86,251

Table 2: Confusion matrix from the classification of the double dam break data.
Predicted class

Internal Boundary

Actual class Internal 3,917,101 285,354
Boundary 11 204,090

Table 3: Time taken in seconds by the classification of the double dam break data.
Method Total time (sec) Avg time/step (sec)

SVM 317.80 1.26
Reference 4,979.28 19.83

including representative samples into the training set. The confusion matrix on Table 1
shows a very low False Negative Rate (FNR) meaning that a low amount of boundary
particles were wrongly classified as internal. A low FNR also indicates that the boundary
has few or no holes. On the other hand, the False Positive Rate (FPR) is somewhat
high, indicating that there is a considerable amount of internal particles being classified
as boundary particles. This higher FPR may be a problem to some applications, but this
can be solved by using a more expensive method such as Dilts’ method [5] to filter this
cases and reduce the FPR.

After training and testing, we used a different simulation made with DualSPHysics to
analyze the use of a classifier built with one simulation to classify another one and test the
generalization of the model. In this case we used a double dam break scene, with a higher
number of particles and finer discretization. The results were similar to the testing data
but with a higher FPR as seen on Table 2, this is a grave issue that needs to be solved.
On the other hand, the time to classify all the particle of each time step of the simulation
using the SVM model is lower than the time needed to compute the reference method
used as ground truth. After all 250 time steps were processed, the total time spent by the
ML approach is considerably lower than the reference method. Table 3 shows the time in
seconds spent by each technique to process the entire dataset. The geometric approach
consumes more than 15 times more time to label the same data, this shows that while
the approach using SVM may yield a high FPR it can be much faster than the geometric
approach. Fig. 3 shows a few steps comparing the reference method with our proposal.

4 Conclusion

With this article we can conclude that it is possible to employ ML techniques to solve
the boundary detection problem with low time overhead on the moment of classification.
The running time of the proposed approach is more than 15 times lower than the reference
method, this was one of the objectives and was successfully met. However the high FPR
may turn the method unusable in some contexts where lower error rates are a requirement.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0441 010441-6 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0441


7

Figure 3: Results of the classification of the double dam break simulation. The top row contains
the results from the reference method, and the bottom row the results obtained by the proposed
method. It is clear that the proposed method gives a closed boundary but has a high FPR.

A third possibility, apart from a pure ML or pure geometric solution, is to combine
both approaches in a two phase method: coarse phase using SVM and a fine phase using
Dilts’ method [5]. The second phase can be run only on the particles labeled as “boundary
candidates” by the classifier used in the first phase. With this we may be able to achieve
smaller running time than the reference method, but with FPR in acceptable levels.

References
[1] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the incompressible

Navier-Stokes equations. J. Comput. Phys., 85:257–283, 1989.
[2] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin

classifiers. In COLT ’92, pages 144–152, 1992.
[3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM TIST,

2:27:1–27:27, 2011. Code at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[4] A. Crespo, J. Domínguez, B. Rogers, M. Gómez-Gesteira, S. Longshaw, R. Canelas, R. Va-

condio, A. Barreiro, and O. García-Feal. DualSPHysics: Open-source parallel CFD solver
based on Smoothed Particle Hydrodynamics (SPH). Comput. Phys. Commun., 187(0):204 –
216, 2015.

[5] G. Dilts. Moving least-squares particle hydrodynamics II: conservation and boundaries. Int.
J. Numer. Meth. Eng., 48(10):1503–1524, 2000.

[6] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for
training support vector machines. The Journal of Machine Learning Research, 6:1889–1918,
2005.

[7] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and application
to non-spherical stars. Mon. Not. R. Astron. Soc., 181:375–389, 1977.

[8] E. Parzen. On the estimation of a probability density function and mode. Annals of Mathe-
matical Statistics, 33:1065–1076, 1962.

[9] J. Platt et al. Fast training of support vector machines using sequential minimal optimization.
Advances in kernel methods—support vector learning, 3, 1999.

[10] M. Sandim, D. Cedrim, L. G. Nonato, P. Pagliosa, and A. Paiva. Boundary detection in
particle-based fluids. Comput. Graph. Forum, 35(2):215–224, 2016.

[11] V. Vapnik and A. Y. Chervonenkis. A class of algorithms for pattern recognition learning.
Avtomat. i Telemekh, 25(6):937–945, 1964.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0441 010441-7 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0441

