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Time-space fractional for the Stefan model
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Departamento de Matemática, FC, UNESP, Bauru, SP

Michael Vynnycky 3

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. In this paper, we solve a particular time-space fractional Stefan problem includ-
ing fractional order derivatives in time and space variables in the Fourier heat conduction
equation. For this, we consider fractional time derivative of order α ∈ (0, 1] and fractional
space derivative of order 2β with β ∈

(
1
2 , 1
]
, both in the Caputo sense. Including time and

space fractional derivatives, the melt front advances as s ∼ tξ, where ξ = ξ (α, β), and we
can recover sub-diffusion, classical diffusion and super-diffusion behaviors. The result for the
proposed problem depends on the choice of order of fractional derivatives α and β provided
that the choice satisfies the relation α = 2β

1+β .
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1 Introduction

In natural and industrial processes, a certain material undergoes phase change from
one phase to another, it melts or solidifies and the solid-liquid interface or phase-change is
called as the Stefan problem. The Stefan problem [3,12,13] is well studied in the literature
and presents various and important applications in many physical processes.

Mathematically describing solidification or melting is a moving boundary problem [3].
Particularly, in the solution of the one-dimensional phase-change melting problem, the
melt front advances as s(t) = kξt

ξ, with a time exponent 0 < ξ < 1
2 , ξ = 1

2 or ξ > 1
2 , the

so-called sub-diffusion, classical diffusion or super-diffusion, respectively. The phenomenon
of anomalous diffusion (when ξ 6= 1

2) is observed in various complex systems, including
polymers, biopolymers, proteins, porous media, macromolecules transport in biological
cells, turbulent flow, among others [7, 8]. Arbitrary order calculus, known as fractional
calculus, have obtained important results to many models related to the complex systems
modeling [6].
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Stefan problems with fractional derivatives have been dealt with by some authors in
recent years. Fractional order derivatives in time and space variables were studied by
Voller [14], but the study considered the fractional order derivatives in time and space
variables separately. The time-fractional diffusion equation, in the Caputo sense, was
used by Roscani [11] in fractional free-boundary Stefan problem investigation.

The paper is organized as follows. A brief review of fractional calculus is treated in
Section 2. Section 3 is devoted to the explicit solution to a particular Stefan problem with
the fractional approach.

2 Preliminary concepts of fractional calculus

The Caputo left-sided fractional derivative of f ∈ Cn [0, b] with respect to y, of order
α > 0 with α /∈ N, with starting point 0+ is given by

(
C
yDα

0+f
)

(y) :=
1

Γ(n− α)

(∫ y

a

f (n) (τ)

(y − τ)1−n+α
dτ

)
, for 0 ≤ y ≤ b, (1)

where4 n = [α] + 1 and Γ(·) denotes the gamma function.
If α = n ∈ N, then

(
C
yDn

0+f
)

(y) := f (n)(y).

Property 2.1. Let Ω = [0, b] be an interval on the real axis R, µ > −1 and α > 0, with
α /∈ N, then

C
xDα

0+x
µ =

Γ(µ+ 1)

Γ(µ− α+ 1)
xµ−α, for µ > [α] and 0 ≤ x ≤ b, (2)

and
C
xDα

0+x
µ = 0, for µ = 0, 1, 2, ..., [α] and 0 ≤ x ≤ b. (3)

The Laplace transform theory is a sophisticated way to solve a class of differential
equations because leads a starting problem to an auxiliary problem. In this way our
starting problem is converted into another one of seemingly simpler solution [1].

Let f(t) be a real function of time variable t ≥ 0. The Laplace transform of f , denoted
by L [f ] (s) = F(s), is defined by

L [f ] (s) = F(s) =

∫ ∞
0

e−stf(t)dt, (4)

whenever the integral converges for5 R [s] ≥ σ > 0, where s = σ + iτ , with σ and τ real
numbers, and F(s) = 0 for σ < 0.

The inverse Laplace transform of F(s) is given by the formula

L −1 [F] (t) = f(t) =
1

2πi
lim
τ→∞

∫ σ+iτ

σ−iτ
est F(s)ds, (5)

4[µ] indicates the integer part of µ.
5R [s] indicates the real part of s.
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where σ is large enough that F(s) is defined for R [s] ≥ σ > 0.
The Laplace transform of the Caputo fractional derivative of φ(x, t) with respect to t

is given by

L
[
C
t Dα

0+φ
]

(x, s) = sαL [φ] (x, s)−
[α]∑
k=0

sα−1−k
∂(k) φ

∂tk
(
x, 0+

)
. (6)

The classical Mittag-Leffler function Eα(x) was introduced by Mittag–Leffler [10] and
defined by

Eα(x) =
∞∑
j=0

xj

Γ (αj + 1)
, for x ∈ R and α > 0. (7)

The Mittag-Leffler function Eα,β(x), generalizing the one in equation (7), is defined by

Eα,β(x) =

∞∑
j=0

xj

Γ (αj + β)
, for x, β ∈ R and α > 0. (8)

The following more simple special relations involving the Mittag-Leffler functions E2α(x)
and E2,2(x) are valid and were proved by Camargo [2], p. 73 and Grigoletto [4] p. 45,
respectively:

E2α(x) =
1

2

[
Eα(x

1
2 ) + Eα(−(x

1
2 ))
]
⇒ E2(x) =

e
√
x + e−

√
x

2
. (9)

E2,2(x) =
e
√
x − e−

√
x

2
√
x

. (10)

Theorem 2.1. Let Λ = [0, b] be an interval on the real axis R, n a natural number
and α ∈ R,

(
n−1
n < α ≤ 1

)
. Then the general solution of the linear sequential differential

equation (
C
xDnα

a+ϕ
)

(x)− λϕ(x) = 0 (11)

can be written as

ϕα (x) =
n∑
k=1

ckx
k−1Enα,k (λxnα) , (12)

where {ck}nk=1 are arbitrary constants and x ∈ Λ.

Proof. See Grigoletto et al. [5], Theorem 2 and Corollary 2.

3 Fractional one-phase Stefan problem

To solve mathematical model of classical melting Stefan problem in one-phase and
one-dimensional semi-infinite domain x ≥ 0, as described by Mitchell and Vynnycky [9],
with fractional calculus, the Fourier heat conduction is replaced by

C
t Dα

0+ T (x, t) = C
xD2β

0+ T (x, t), 0 < x < s(t), t > 0, (13)
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where α ∈ (0, 1], β ∈
(
1
2 , 1
]
, T (x, t) is the dimensionless temperature on the surface x

at time t, and as time advances, x = s(t) is the solid-liquid interface. Equation (13) is
subject to the initial conditions

s(0) = 0, T (x, 0) = 0, (14)

boundary conditions
T (0, t) = 1, T (s(t), t) = 0, (15)

and Stefan condition

σ
ds

dt
= −C

xDβ
0+ T (x, t)

∣∣∣∣∣
x=s(t)

, with σ > 0, (16)

where σ is the reciprocal of Stefan number (St).
Here we solve equation (13) subject to the conditions in (14)–(16) by means of an

integral transform method [1]. Applying the Laplace transform to (13) and boundary
condition T (0, t) = 1 with respect to t, by means of (6) and (12), we reduce the problem
in equation (13) to the following expression

T (x, s) =
1

s
E2β

(
sαx2β

)
+ c2 xE2β,2

(
sαx2β

)
. (17)

Substituting α = β = 1 into equation (17) and using relations (9) and (10), we have

T (x, s) =
1

s

(
e
√
sx + e−

√
sx

2

)
+ c2

(
e
√
sx − e−

√
sx

2
√
s

)
,

which corresponds to the expression for Laplace transform of Fourier heat conduction
equation with derivatives of integer order. One can argue that c2 must be − 1√

s
, as other-

wise, the boundary condition T (s(t), t) = 0 cannot be satisfied, then, in accordance with
this, we rewrite equation (17) as follows

T (x, s) =
1

s
E2β

(
sαx2β

)
− s

α
2β
−1
xE2β,2

(
sαx2β

)
. (18)

Specifically, we take c2 = −s
α
2β
−1

due to the derivation of the boundary s(t) which will be
used later to solve the problem. Substituting the Mittag-Leffler function defined by the
series in equations (7) and (8) into equation (18) and taking the inverse Laplace transform
we arrive at

T (x, t) = 1−

 ∞∑
j=0

(
x

t
α
2β

)(
x2β

tα

)j
Γ (2βj + 2) Γ

(
−αj − α

2β + 1
) − ∞∑

j=1

(
x2β

tα

)j
Γ (2βj + 1) Γ (1− αj)

 . (19)

The moving boundary s(t) at any time t must be proportional to t
α
2β , that is,

s(t) = γ t
α
2β , (20)
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where γ is a constant to be determined.
Next we will find the solution to the equation (13) with the conditions (14)–(16). Our

solution must satisfy the boundary condition T (s(t), t) = 0 in equation (15). So if we
substitute s(t) in equation (20) into equation (19) and introduce a constant η on the
function T (x, t) in equation (20), we find explicit solution of the problem, given by

T (x, t) = 1− 1

η

 ∞∑
j=0

(
x

t
α
2β

)(
x2β

tα

)j
Γ (2βj + 2) Γ

(
−αj − α

2β + 1
) − ∞∑

j=1

(
x2β

tα

)j
Γ (2βj + 1) Γ (1− αj)

 , (21)

where

η =

∞∑
j=0

γ2βj+1

Γ (2βj + 2) Γ
(
−αj − α

2β + 1
) − ∞∑

j=1

γ2βj

Γ (2βj + 1) Γ (1− αj)
. (22)

If we now consider the following relation between the fractional order α and β given by

α =
2β

1 + β
, (23)

then the expression of coefficient γ can be derived from equation (16), where we use the
Property 2.1. The expression satisfies the transcendental equation

σγβ+1 α

2β
η =

 ∞∑
j=0

γ2βj+1

Γ (2βj + 2− β) Γ
(
−αj − α

2β + 1
) − ∞∑

j=1

γ2βj

Γ (2βj + 1− β) Γ (1− αj)

 . (24)

Particularly, when α→ 1 and β → 1, the solution in equation (21) coincides with the
solution presented in [9], given by

T (x, t) = 1−
erf

(
x

2
√
t

)
erf (µ)

, (25)

where erf(x) =
2√
π

∫ x

0
e−τ

2
dτ is error function, s(t) = 2µ

√
t, where µ satisfies the tran-

scendental equation √
πσµ erf (µ) eµ

2
= 1. (26)

4 Conclusions

In this paper, we presented the explicit solution, by means of an integral transform
method and by the aid of calculations, to a fractional approach to a particular mathe-
matical model of the classical melting Stefan problem in one-phase and one-dimensional
semi-infinite domain, where we considered fractional order derivatives in time and space
variables in the Caputo sense. We have recovered the results of integer derivative model
proposed by Mitchell and Vynnycky [9] as a special case and we observe that for choices
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of α and β satisfying the relation in equation (23), if α < β, α = β or α > β, sub-
diffusion, classical diffusion or super-diffusion behaviors are obtained, respectively. The
future work would be to use the fractional space derivative in the Riesz sense (space-
fractional Laplacian) and the fractional time derivative in the Caputo sense in order to
solve Stefan problems in one-dimensional unbounded space.
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