Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Comparativo entre os Métodos da Secante, de Newton e de Newton Utilizando Derivada Numérica

Quezia Emanuelly de Oliveira Souza ¹ Abner Vinícius de Lucena Sousa² Ivan Mezzomo³ Matheus da Silva Menezes⁴ Stefeson Bezerra de Melo⁵ Centro de Ciências Exatas e Naturais, UFERSA, Mossoró, RN

1 Referencial Teórico

Em áreas como administração, economia, engenharia, biologia, entre outras, é comum o surgimento de problemas que exigem em sua resolução, o cálculo de raízes de funções, como em questões de otimização, lucro de uma empresa, circuitos elétricos, etc. Um dos métodos numéricos mais utilizados para encontrar raízes de funções é o método de Newton, que tem como sua principal limitação a presença da derivada em sua função de iteração. Uma forma de contornar esta limitação é usar derivada numérica por diferenças finitas. O método da secante é uma modificação do método de Newton que usa a reta secante para eliminar o cálculo da derivada. Desssa forma, este artigo visa comparar quanto ao número de iterações e ao erro relativo, os métodos da secante, Newton e a técnica de diferenças finitas para a aproximação da derivada aplicada ao método de Newton, afim de analisar a influência da derivada e suas aproximações no cálculo de raízes de funções.

O método de Newton tem sua função de iteração dada por $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$ [1]. A técnica de diferenças finitas consiste em aproximar a derivada de uma função através de fórmulas discretas. Considerando a definição formal de derivada e tomando h suficientemente pequeno, é esperado obter uma aproximação razoável para f'(x) através da diferença finita progressiva $f'(x) \approx \frac{f(x+h)-f(x)}{h}$ [2]. O método da secante é uma variação do método de Newton que utiliza uma sequência de retas secantes para aproximar-se cada vez mais da raiz. Sua função de iteração é dada por $x_{i+1} = x_i - \frac{f(x_i)(x_{i-1}-x_i)}{f(x_{i-1})-f(x_i)}$ [1].

2 Resultados e Discussões

Para os resultados na Tabela 1, Newton-N significa a técnica de diferenças finitas para a aproximação da derivada aplicada ao método de Newton, x_0 é a aproximação inicial, [a,b] é um intervalo arbitrário que contém a raiz, x é a raiz analisada e \bar{x} é a raiz calculada. Utilizamos nos experimentos a linguagem de programação C no compilador

¹quezia.emanuelly99@gmail.com

²sousa.abner@hotmail.com

³imezzomo@ufersa.edu.br

⁴matheus@ufersa.edu.br

⁵stefeson@ufersa.edu.br

2

DevC++, como critério de parada $|f(x_i)| < \varepsilon$, com precisão $\varepsilon = 10^{-6}$ e o valor do h na derivada numérica foi de 10^{-6} , escolhido arbitrariamente. As funções analisadas possuem as seguintes características:

Função 1: $f(x) = x^5 + 2x^4 - 48x^3 + 126x^2 - 81x$, possui raízes -9, 0, 1 e 3 (multiplicidade 2). Intervalo [-1, 4] e $x_0 = 2$;

Função 2: $f(x) = (x^3 - x^2 - x + 1)ln(x^2)$, possui raízes -1 e 1. Intervalo [-2, -0.5] e $x_0 = -1.5$;

Função 3: $f(x) = 2x^4 + 4x^3 + 3x^2 - 10x - 15$, possui raízes -1,3003841326439 e 1,4928787086636. Intervalo [-4,0] e $x_0 = -4$;

Função 4: $f(x) = x^6 + 31x^5 + 328x^4 + 1422x^3 + 2241x^2 - 621x - 3402$, possui raízes -3 (multiplicidade 3), 1, -9 e -14. Intervalo [-5,0] e $x_0 = -5$.

rabeia 1. Resultados dos experimentos realizados					
	Método	x	\bar{x}	#Iter	E_R
Função 1	Newton-N	3	3.0000142990	19	4.76631×10^{-6}
	Newton		3.0001104233	16	3.68064×10^{-5}
	Secante		3.0001115799	22	3.71919×10^{-5}
Função 2	Newton-N	-1	-1.0000483188	21	4.83165×10^{-5}
	Newton		-1.0000976394	20	9.76299×10^{-5}
	Secante		-0.9997053146	15	2.94772×10^{-4}
Função 3	Newton-N	-1,3003841326439	-1.3003841326	8	3.37593×10^{-11}
	Newton		-1.3003841326	8	3.37593×10^{-11}
	Secante		-1.3003841639	6	$2,40361 \times 10^{-8}$
Função 4	Newton-N	-3	-3.0008180352	19	2.72604×10^{-4}
	Newton		-3.0007960031	19	2.65264×10^{-4}
	Secante		-3.0013499260	20	4.49773×10^{-4}

Tabela 1. Resultados dos experimentos realizados

Analisando a Tabela 1, percebemos que todos os métodos convergiram para a raiz analisada. Na função 1, o método de Newton se mostrou mais eficiente que os demais métodos quanto ao número de iterações, mas quanto ao erro relativo, o método de Newton-N teve o melhor desempenho. O método da Secante mostrou-se mais eficiente que os demais nas funções 2 e 3 quanto ao número de iterações. Na função 2, o método de Newton-N mostrou-se menos eficiente com relação ao número de iterações, porém este método obteve o melhor resultado quanto ao erro relativo. Os métodos de Newton e Newton-N apresentaram desempenho similar tanto em relação ao erro relativo quanto ao número de iterações, principalmente nas funções 3 e 4. O método da Secante mostrou-se o menos eficiente quanto ao erro relativo para todas as funções analisadas. Portanto, podemos concluir que o método Newton-N foi o mais eficiente em relação ao erro relativo, enquanto em relação ao número de iterações não é possível concluir qual o melhor método.

Agradecimentos

Os autores agradecem o apoio da UFERSA e do CNPq na execução deste trabalho.

Referências

- [1] S. C. Chapra and R. P. Canale. *Metodos Numéricos para Engenharia*. 5. ed., Bookman, São Paulo, 2011.
- [2] G. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, New York, 1999.