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Abstract. Second order sufficient optimality conditions are established for continuous-
time optimization problems with equality constraints. The approach consists in obtaining
second-order sufficient conditions for unconstrained problems first, transforming the equality
constrained problem into an unconstrained one through penalization and then applying the
first result.
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1 Introduction

We are concerned with the nonlinear continuous-time optimization problem with equal-
ity constraints in the form

maximize P (z) =

∫ T

0
φ(z(t), t)dt

subject to h(z(t), t) = 0 a.e. t ∈ [0, T ],
z ∈ L∞([0, T ];Rn),

(1)

where φ : Rn × [0, T ] → R and h : Rn × [0, T ] → Rp. Here, L∞([0, T ];Rn) denotes
the Banach space of all Lebesgue-measurable essentially-bounded n-dimensional vector
functions defined on the compact interval [0, T ] ⊂ R, with the norm ‖ · ‖∞ defined by

‖z‖∞ = max
1≤i≤n

esssup
t∈[0,T ]

|zi(t)|.

All vectors are column vectors, unless transposed when they will be denoted by a prime,
and all integrals are in the Lebesgue sense.
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Continuous-time problems arise often in the literature and were first proposed by
Bellman [1] in his studies of some dynamic models of production and inventory called
“bottleneck processes”, which gave rise to continuous-time linear programming. Such
problems contained only inequality constraints and can be written in the form

maximize P (z) =

∫ T

0
φ(z(t), t)dt

subject to g(z(t), t) ≥ 0, a.e. t ∈ [0, T ],
z ∈ L∞([0, T ];Rn),

where g : h : Rn × [0, T ] → Rm. For a summary of the results pertaining to necessary
optimality conditions in continuous-time problems with inequality constraints and duality,
with a fairly extensive list of relevant references, the reader is referred to [3, 7, 8].

Several authors presented sufficient optimality conditions for certain classes of continuous-
time problems with non-linear inequality constraints, for example, Rojas-Medar, Brandão
and Silva [2], Oliveira and Rojas-Medar [6] using hypotheses of generalized convexity
and Zalmai [9] which considered a problem with equality and inequality, but assuming
hypotheses of pseudoconvexity on the problem.

The main motivation of this work lies in the fact that, in the formulation given in (1)
with equality constraints, without hypotheses of convexity on the problem and the feasible
solutions belonging to L∞([0, T ];Rn), sufficient optimality conditions are not found in the
literature. Besides, the problem (1) contains certain classes of constrained variational and
optimal control problems and can be used to solve them both from the theoretical and
computational point of view, serving as the basis for algorithms architecture.

The text is organized as follows. In Section 2, we give some preliminaries and the
sufficient optimality conditions for the unconstrained problem. In Section 3, using previous
results, the problem (1) is treated and we present an example. Final comments are given
in Section 4.

2 Unconstrained Problem

Denote the feasible set of problem (1) by

Ω = {z ∈ L∞([0, T ];Rn) | h(z(t), t) = 0 a.e. [0, T ]}

and for z ∈ Ω, denote ∇h(z(t), t) = (∇h1(z(t)), . . . ,∇hp(z(t), t))′ a.e. t ∈ [0, T ].

Definition 2.1. We say that z̄ ∈ Ω is a local optimal solution of problem (1) if there
exists ε > 0 such that P (z̄) ≥ P (z) for all z ∈ Ω satisfying ‖z − z̄‖∞ < ε.

Suppose the following assumptions valid:

(H1) φ(·, t) is continuously differentiable throughout [0, T ], φ(z, ·) and∇φ(z, ·) are Lebesgue
measurable for each z, and there exists a number Kφ > 0 such that

‖∇φ(z̄(t), t)‖ ≤ Kφ a.e. in [0, T ].
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(H2) h(·, t) is continuously differentiable throughout [0, T ] and h(z, ·) and ∇h(z, ·) are
Lebesgue measurable for each z. There exists K1 > 0 such that

‖∇h(z̄(t), t)‖ ≤ K1 a.e. t ∈ [0, T ].

Consider the unconstrained problem

maximize P (z) =

∫ T

0
φ(z(t), t)dt

subject to z ∈ L∞([0, T ];Rn),
(2)

and assume that (H1) holds. In the next proposition, we derive sufficient optimality
conditions for the problem (2).

Proposition 2.1. If the assumptions

(a) ∇φ(z̄(t), t) = 0 a.e. t ∈ [0, T ], and

(b)

∫ T

0
γ(t)′∇2φ(z̄(t), t)γ(t) dt < 0 ∀ γ ∈ L∞([0, T ];Rn) \ {0}

hold, then z̄ is a local optimal solution for the problem (2).

Proof. Suppose that z̄ is not a local optimal solution for (2). Then there exists γ̄ ∈
L∞([0, T ];Rn) \ {0} and a number τ̄ > 0 such that

P (z̄ + τ γ̄) > P (z̄), τ ∈ (0, τ̄).

By the second order Taylor expansion in Banach Spaces (see [5]) we have that

0 < P (z̄ + τ γ̄)− P (z̄) = τδP (z̄; γ̄) +
1

2
τ2δ2P (z̄; (γ̄, γ̄)) + ε(τ2), (3)

where ε(τ2)/τ2 → 0 when τ → 0. Using the hypothesis (a), it results that

δP (z̄; γ̄) =

∫ T

0
∇φ(z̄(t), t)′γ̄(t) dt = 0.

Therefore, (3) implies in

0 <
1

2
τ2δ2P (z̄; (γ̄, γ̄)) + ε(τ2), (4)

where ε(τ2)/τ2 → 0 when τ → 0. Dividing both sides of (4) and taking limits as τ → 0,
we obtain

δ2P (z̄; (γ̄, γ̄)) =

∫ T

0
γ̄(t)′∇2φ(z̄(t), t)γ̄(t) dt ≥ 0,

contradicting (b).
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3 Problem with Equality Constraints

Now, we will consider the problem (1). We assume throughout this section that (H1)
and (H2) hold. The next result will be useful in the proof of sufficient optimality conditions
for the problem (1).

Lemma 3.1. Let R,S : [0, T ] → Rn×n be symmetric matrices with measurable entries.
Suppose that

(A) ∫ T

0
γ(t)′S(t)γ(t) dt = 0, ∀ γ ∈ L∞([0, T ];Rn) \ {0} ⇒

∫ T

0
γ(t)′R(t)γ(t) dt < 0,

(B) ∫ T

0
γ(t)′S(t)γ(t) dt ≤ 0 ∀ γ ∈ L∞([0, T ];Rn).

Then there exists a scalar ᾱ > 0 such that∫ T

0
γ(t)′R(t)γ(t) dt+ α

∫ T

0
γ(t)′S(t)γ(t) dt < 0

for all γ ∈ L∞([0, T ];Rn) \ {0} and α > ᾱ.

Proof. By contradiction, assume that there exists a sequence {γk}k∈N ⊂ L∞([0, T ];Rn) \
{0}, ||γk||∞ = 1 for all k, such that∫ T

0
γk(t)′R(t)γk(t) dt+ k

∫ T

0
γk(t)′S(t)γk(t) dt ≥ 0. (5)

Since the sequence {γk}k∈N is bounded in L∞([0, T ];Rn) \ {0}, there exists a subsequence
{γk}k∈N′ , N′ ⊂ N, converging weakly to a function γ̄ ∈ L∞([0, T ];Rn)\{0} (see [4]). Then,
in (5) we have that ∫ T

0
γk(t)′R(t)γk(t) dt

k→∞−→
∫ T

0
γ̄(t)′R(t)γ̄(t) dt,

∫ T

0
γk(t)′S(t)γk(t) dt

k→∞−→
∫ T

0
γ̄(t)′S(t)γ̄(t) dt.

From hypothesis (B), we have that∫ T

0
γ̄(t)′S(t)γ̄(t) dt ≤ 0

and observing (5) we conclude that∫ T

0
γ̄(t)′S(t)γ̄(t) dt = 0,
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for otherwise the left-hand side in (5) would be −∞. Therefore, from (5) we conclude that∫ T

0
γ̄(t)′R(t)γ̄(t) dt ≥ 0,

contradicting hypothesis (A).

We are now in position to state and prove the main result of this section: the sufficient
optimality conditions for problem (1).

Theorem 3.1. Let z̄ ∈ Ω and suppose that there exists u∗ ∈ L∞([0, T ];Rp) such that

(i) ∇φ(z̄(t), t) +∇h(z̄(t), t)′u∗(t) = 0 a.e. t ∈ [0, T ] and

(ii)

∫ T

0
γ(t)′

{
∇2L(z̄(t), t)

}
γ(t) dt < 0 for all γ ∈ N \ {0}, where

L(z(t), t) = φ(z(t), t) +

p∑
i=1

u∗i (t)hi(z(t), t) a.e. t ∈ [0, T ]

and
N = {γ ∈ L∞([0, T ];Rn) | ∇h(z̄(t), t)′γ(t) = 0 a.e. t ∈ [0, T ]}.

Proof. Consider the unconstrained auxiliary problem

maximize P̃ (z) =

∫ T

0
Lα(z(t), t)dt

subject to z ∈ L∞([0, T ];Rn),
(6)

where Lα : Rn × [0, T ]→ R is given by

Lα(z, t) = φ(z, t) + u∗(t)′h(z, t) +
α

2
||h(z, t)||2.

By differentiation of Lα we obtain

∇Lα(z, t) = ∇φ(z, t) +∇h(z, t)[u∗(t) + αh(z, t)]

and

∇2Lα(z, t) = ∇2φ(z, t) +

p∑
i=1

[u∗i (t) + αhi(z, t)]∇2hi(z, t)

+ α∇h(z, t)′∇h(z, t).

Let’s check that the hypotheses of Proposition 2.1 hold for the problem (6) at z̄. Indeed,
by (H1) and (H2) we have that Lα(·, t) is continuously differentiable throughout [0, T ],
Lα(z, ·) and ∇Lα(z, ·) are Lebesgue measurable for each z and as

||∇Lα(z̄(t), t)|| = ||∇φ(z̄(t), t) +∇h(z̄(t), t)u∗(t)|| = 0 a.e. t ∈ [0, T ],
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it result that (H1) holds for the problem (6) and as ∇Lα(z̄(t), t) = 0 a.e. t ∈ [0, T ], the
assumption (a) of Proposition 2.1 holds. Now, if γ ∈ N \ {0},∫ T

0
γ(t)′

{
∇2Lα(z̄(t), t)

}
γ(t) dt

=

∫ T

0
γ(t)′

{
∇2φ(z̄(t), t) +

p∑
i=1

u∗i (t)∇2hi(z̄(t), t) + α∇h(z̄(t), t)′∇h(z̄(t), t)

}
γ(t) dt

=

∫ T

0
γ(t)′∇2L(z̄(t), t)γ(t) dt+ α

∫ T

0
γ(t)′∇h(z̄(t), t)′∇h(z̄(t), t)γ(t) dt.

From assumption (ii) we have that∫ T

0
γ(t)′∇2L(z̄(t), t)γ(t) dt < 0

for all γ ∈ N \ {0}. By applying Lemma 3.1 with R(t) = ∇2L(z̄(t), t) and S(t) =
∇h(z̄(t), t)′∇h(z̄(t), t), it follows that there exists ᾱ > 0 such that∫ T

0
γ(t)′

{
∇2Lα(z̄(t), t)

}
γ(t) dt < 0

for all γ ∈ L∞([0, T ];Rn) \ {0} and α > ᾱ. Choosing an α > ᾱ, the assumptions of
Proposition 2.1 are satisfied and hence z̄ is a local optimal solution of problem (6), that
is, there exists ε > 0 such that P̃ (z̄) ≥ P̃ (z) for all z satisfying ||z− z̄||∞ < ε. Since for all
z ∈ Ω, we have that h(z(t), t) = 0 a.e. t ∈ [0, T ], then Lα(z(t), t) = L(z(t), t) and z̄ ∈ Ω
implies in h(z̄(t), t) = 0 a.e. t ∈ [0, T ], we obtain

P (z̄) = P̃ (z̄) ≥ P̃ (z) = P (z)

for all z ∈ Ω with ‖z− z̄‖∞ < ε. Thereby, z̄ is a local optimal solution for problem (1).

Below, we present an illustrative example where we use Theorem 3.1 to obtain sufficient
optimality conditions for a certain problem.

Example 3.1. Consider the following problem in L∞([0, 1];R3):

maximize P (z) =

∫ 1

0
[z1(t)z2(t) + z2(t)z3(t) + z1(t)z3(t)] dt

subject to z1(t) + z2(t) + z3(t) = 3 a.e. t ∈ [0, 1].
(7)

Note that z̄(t) = (1, 1, 1)′ a.e. t ∈ [0, 1] and ū(t) = −2 a.e. t ∈ [0, 1] satisfyz2(t) + z3(t)
z1(t) + z3(t)
z1(t) + z2(t)

+ u(t)

1
1
1

 = 0 a.e. t ∈ [0, 1].

For γ ∈ N \ {0}, the condition (ii) in Theorem 3.1 also happens:∫ 1

0
γ(t)′

0 1 1
1 0 1
1 1 0

 γ(t) dt =

∫ 1

0
−γ21(t)− γ22(t)− γ23(t) dt < 0.

Therefore, from Theorem 3.1 we see that z̄ is a local optimal solution for problem (7).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0431 010431-6 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0431


7

4 Final Comments

In this work, we present sufficient optimality conditions for continuous-time optimiza-
tion problem with equality constraints. Obtaining sufficient optimality conditions when
inequality constraints are present, without using hypotheses of generalized convexity, is
going to be a topic of future work.
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