Zeta function of a graph revisited

G.A.T. F. da Costa
Departamento de Matemática
Universidade Federal de Santa Catarina
88040-900-Florianópolis-SC-Brasil
E-mail: g.costa@ufsc.br

Abstract

This talk reviews some new combinatorial and algebraic aspects of the zeta function of a finite graph.

1 Introduction

The \(\zeta_G(z) \) function (also called the Ihara zeta function) of a finite connected and oriented graph \(G \) (the graph may have multiple edges and loops) is formally defined by

\[
\zeta_G(z) = \prod_{\lbrack p \rbrack} (1 - z^{N(p)})^{-1}
\]

where the product is over the equivalence classes of non periodic backtrack-less and tail-less closed paths (cycles, for short) in \(G \), \(N(p) \) the length of a cycle in \(\lbrack p \rbrack \). It can be rewritten as

\[
\zeta_G(z)^{-1} = \prod_{N=1}^{+\infty} (1 - z^N)^{\Omega(N,T)} = \det(I - zT),
\]

\[
\Omega(N,T) = \frac{1}{N} \sum_{g \mid N} \mu(g) \text{Tr} T^N g.
\]

where \(N \) is a positive integer, \(\mu \) the Möbius function: a) \(\mu(+1) = +1 \), b) \(\mu(g) = 0 \), if \(g = p_1^{e_1} \ldots p_q^{e_q} \), \(p_1, \ldots, p_q \) primes, and any \(e_i > 1 \), c) \(\mu(p_1 \ldots p_q) = (-1)^q \). \(\Omega(N,T) \) is the number of equivalence classes of cycles of length \(N \) in \(G \), \(T \) is the edge adjacency matrix of \(G \), \(g \) ranges over the positive divisors of \(N \). A great deal of work has been done on this function. I refer the reader to [7], [8] and [9] for a comprehensive overview and references therein.

There is a remarkable resemblance between relations (1.2) and (1.3) with the famous \textit{Witt identity} and the \textit{Witt formula}, respectively, which are the following:

\[
\prod_{N=1}^{+\infty} (1 - z^N)^{M(N,R)} = 1 - Rz,
\]

\[
M(N,R) = \frac{1}{N} \sum_{g \mid N} \mu(g) R^N g.
\]
where R is a real number. See the introduction of [4] for a nice account about the Witt relations. The Witt formula is also called the *necklace polynomial* because it solves the problem of counting inequivalent nonperiodic colorings of a necklace with N beads with at most R colors. See [10]. Consider the graph with a single vertex and R loops hooked to it and with the edges directed, say, counter clockwise. Witt formula gives the number of classes of equivalence of cycles of length N that traverse the graph counter clockwise [6]. Another interpretation of the Witt formula is as a dimension formula for the homogenous subspaces of a graded free Lie algebra. The Poincaré-Witt-Birkoff theorem then implies the Witt identity. See [5]. In [10] Metropolis and Rota proved that the Witt polynomials satisfy several identities which they used to prove several important results about the *Necklace Algebra*, *Witt vectors*, etc. Natural questions to ask are: Relations (1.2) and (1.3) can be related to a coloring problem? Is there a connection with free Lie algebras? Do the Ω’s satisfy some identities? It turns out that all these questions have positive answers as I have shown in [1]. These are new aspects of the zeta function of a graph some of which are reviewed in this talk.

In section 2.1 I show that the Ω’s satisfy several identities analogous to those satisfied by the Witt polynomials. In section 2.2 Ω and the coefficients of the polynomial in z given by $\det(1 - zT)$ are interpreted as the dimensions of certain vector spaces associated to a free Lie superalgebra. See [1] for the details. The results were obtained using ideas from [2], [3], [7] and [10].

2 Results

2.1 Some identities

In [10] Metropolis and Rota proved that the Witt polynomials satisfy several important identities which they used to build the necklace algebra. Theorem 2.1 shows that Ω satisfies similar identities. Theorem 2.2 gives a generalization of the classical *Strehl identity* [11].

Theorem 2.1. Given the matrices T_1 and T_2 denote by $T_1 \otimes T_2$ the Kronecker product of T_1 and T_2. Then,

$$
\sum_{[s,t]=N} (s,t)\Omega(s,T_1)\Omega(t,T_2) = \Omega(N,T_1 \otimes T_2), \quad (2.1)
$$

(s,t) is the maximum common divisor of s and t. The summation is over the set of all positive integers s,t such that $[s,t]=N$, $[s,t]$ the least common multiple of s,t. Also,

$$
\Omega(N,T^l) = \sum_{[l,t]=N^l} \frac{t}{N^l} \Omega(t,T). \quad (2.2)
$$

and

$$
(r,s)\Omega(N, T_1^{s/(r,s)} \otimes T_2^{r/(r,s)}) = \sum (rp,sq)\Omega(p,T_1)\Omega(q,T_2) \quad (2.3)
$$

The sum is over p,q such that $pq/(pr,qs) = N/(r,s)$.

Theorem 2.2.

\[
\prod_{k \geq 1} \left[\frac{1}{\det(1 - z^k T_1)} \right]^{\Omega(k,T_2)} = \prod_{j \geq 1} \left[\frac{1}{\det(1 - z^j T_2)} \right]^{\Omega(j,T_1)}
\] \hspace{1cm} (2.4)

It follows from the latter result that

\[
\prod_{k \geq 1} \left[\zeta_{G_1}(z^k) \right]^{\Omega(k,T_2)} = \prod_{j \geq 1} \left[\zeta_{G_2}(z^j) \right]^{\Omega(j,T_1)}
\] \hspace{1cm} (2.5)

Theorem 2.3.

\[
\prod_{n \geq 1} \frac{1}{1 - \Omega(n,T) z^n} = \left(\frac{1}{1 - z} \right)^\alpha
\] \hspace{1cm} (2.6)

\[
\alpha = \sum_{d \mid n} d \left[\Omega(d,T) \right]^{n/d}
\] \hspace{1cm} (2.7)

2.2 Dimension formulas

Theorem (2.4) below together with results from [3] imply that (1.2) and (1.3) can naturally be interpreted as data associated to a Lie superalgebra.

Theorem 2.4. Define \(g(z) := \sum_{N=1}^{\infty} \frac{\Tr T^N}{N} z^N \). Then,

\[
\prod_{N=1}^{\infty} (1 - z^N)^\pm \Omega(N,T) = e^{\mp g(z)} = [\det(1 - zT)]^{\mp N} = 1 + \sum_{i=1}^{\infty} c_\pm(i) z^i,
\] \hspace{1cm} (2.8)

where

\[
c_\pm(i) = \sum_{m=1}^{i} \lambda_\pm(m) \sum_{a_1 + 2a_2 + \ldots + ia_i = i} \prod_{k=1}^{i} \frac{(\Tr T^k)^{a_k}}{a_k! k^{a_k}}
\] \hspace{1cm} (2.9)

with \(\lambda_+(m) = (-1)^{m+1}, \lambda_-(m) = +1, c_+(i) = 0 \) for \(i > 2|E| \), and \(c_-(i) \geq 0 \). Furthermore,

\[
\Tr T^N = N \sum_{s \in S(N)} (\pm 1)^{|s|+1} \frac{|s|!}{s!} \prod_{i=1}^{s} c_\pm(i)^{s_i}
\] \hspace{1cm} (2.10)

where \(S(N) = \{ s = (s_i)_{i \geq 1} \mid s_i \in \mathbb{Z}_{\geq 0}, \sum s_i = N \} \) and \(|s| = \sum s_i, \ s! = \prod s_i! \).

In section 2.3 of [3], given a formal power series \(\sum_{i=1}^{\infty} t_i z^i \) with \(t_i \in \mathbb{Z} \), for all \(i \geq 1 \), the coefficients in the series are interpreted as the superdimensions of a \(\mathbb{Z}_{\geq 0} \)-graded superspace \(V = \bigoplus_{i=1}^{\infty} V_i \) with dimensions \(\dim V_i = |t_i| \) and superdimensions \(\Dim V_i = t_i \in \mathbb{Z} \). Let \(\mathcal{L} \) be the free Lie superalgebra generated by \(V \). Then, \(\mathcal{L} = \bigoplus_{N=1}^{\infty} \mathcal{L}_N \) and the subspaces \(\mathcal{L}_N \) have dimension given by

\[
\Dim \mathcal{L}_N = \sum_{g \mid N} \mu(g) \frac{W \left(\frac{N}{g} \right)}{g}
\] \hspace{1cm} (2.11)
where \(g \) ranges over all common divisors of \(N \),
\[
W(N) = \sum_{s \in S(N)} \frac{(|s| - 1)!}{s!} \prod t(i)^{s_i}
\]
(2.12)
with \(S(N) \) as in (2.10), is called the Witt partition function. Furthermore,
\[
\prod_{N=1}^{\infty} (1 - z^N)^{\pm \text{Dim} \mathcal{L}_N} = 1 + \sum_{i=1}^{\infty} f_\pm(i)z^i.
\]
(2.13)
where \(f_+(i) = t(i) \) and \(f_-(i) = \text{dim} \mathcal{U}(\mathcal{L})_i \) is the dimension of the \(i \)-th homogeneous subspace of the universal enveloping algebra \(\mathcal{U}(\mathcal{L}) \). Identity (2.13) (the + case) is the generalized Witt identity.

Apply this interpretation to the determinant \(\det(1 - zT) \) which is a polynomial of degree \(2|E| \) in the formal variable \(z \). It can be taken as a power series with coefficients \(t_i = 0 \), for \(i > 2|E| \). Comparison of (2.11), (2.12), (2.13) with (2.8), (2.9), (2.10) implies the following result:

Theorem 2.5. Given a graph \(G \), its edge matrix, let \(V = \bigoplus_{i=1}^{2|E|} V_i \) be a \(\mathbb{Z}_{>0} \)-graded superspace with finite dimensions \(\text{dim} V_i = |c_+(i)| \) and the superdimensions \(\text{Dim} V_i = c_+(i) \) given by (2.9), the coefficients of \(\det(1 - zT) \). Let \(\mathcal{L} = \bigoplus_{N=1}^{\infty} \mathcal{L}_N \) be the free Lie superalgebra generated by \(V \). Then, \(\mathcal{L}_N \) has superdimension \(\text{Dim} \mathcal{L}_N = \Omega(N,T) \). The algebra has generalized Witt identity given by (1.2) and \(\zeta(z) \) is the generating function for the dimensions of the subspaces of the enveloping algebra \(\mathcal{U}(\mathcal{L}) \) which are \(\text{Dim} \mathcal{U}(\mathcal{L})_n = c_-(n), c_-(n) \) given by (2.9).

Example 1. \(G_1 \), the graph with 2 edges counterclockwisely oriented and hooked to a single vertex. The edge matrix for \(G_1 \) is the \(4 \times 4 \) symmetric matrix
\[
T_{G_1} = \begin{pmatrix} A & B \\ B & A \end{pmatrix}
\]
where \(A \) is the \(2 \times 2 \) matrix with all entries equal to 1 and \(B \) is the \(2 \times 2 \) matrix with the main diagonal entries equal to 0 and all the other entries equal to 1. In this case,
\[
\text{Tr} T_{G_1}^N = 2 + (-1)^N + 3^N,
\]
\[
\det(1 - zT_{G_1}) = 1 - 4z + 2z^2 + 4z^3 - 3z^4,
\]
so that the number of classes of reduced nonperiodic cycles of length \(N \) is given by the formula
\[
\Omega(N,T_{G_1}) = \frac{1}{N} \sum_{g \mid N} \mu(g) \left(2 + (-1)^N + 3^N\right)
\]
Let \(V = \bigoplus_{i=1}^{4} V_i \) be a \(\mathbb{Z}_{>0} \)-graded superspace with dimensions \(\text{dim} V_1 = 4, \text{dim} V_2 = 2, \text{dim} V_3 = 4, \text{dim} V_4 = 3 \) and superdimensions \(\text{Dim} V_1 = -4, \text{Dim} V_2 = 2, \text{Dim} V_3 = 4, \text{Dim} V_4 = -3 \). Let \(\mathcal{L} = \bigoplus_{N=1}^{\infty} \mathcal{L}_N \) be the free graded Lie super algebra generated by \(V \). The dimension of \(\mathcal{L}_N \) is \(\text{Dim} \mathcal{L}_N = \Omega(N,T_{G_1}) \) which satisfies the identity
\[
\prod_{N=1}^{+\infty} (1 - z^N)^{\Omega(N,T_{G_1})} = 1 - 4z + 2z^2 + 4z^3 - 3z^4
\]
The enveloping algebra subspaces have dimensions given by the zeta function of G_1,

$$\prod_{N=1}^{+\infty} (1 - z^N)^{-\Omega(N,T_{G_1})} = 1 + \frac{1}{16} \sum_{n=1}^{\infty} ((-1)^n + 39 \cdot 3^n - 24 - 12n)z^n$$

Example 2. G_2, the bipartite graph with two vertices linked by three edges likewise oriented from one vertex to the other. The edge matrix of G_2 is as before but A has all entries equal to zero and B is

$$B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

The edge matrix has the trace $TrT^N_{G_2} = 0$ if N is odd and $TrT^N_{G_2} = 4 + 2 \cdot 2^N$ if N is even, and the determinant

$$det(1 - zT_{G_2}) = 1 - 6z^2 + 9z^4 - 4z^6$$

If N is odd, the number of classes of nonperiodic cycles of length N is $\Omega(N,T_{G_2}) = 0$, if N is odd; if N is even,

$$\Omega(N,T_{G_2}) = \frac{1}{N} \sum_{g|N} \mu(g)TrT^N_{G_2}$$

Let $V = \bigoplus_{i=1}^{3} V_{2i}$ be a $\mathbb{Z}_{>0}$-graded superspace with dimensions $dimV_2 = 6$, $dimV_4 = 9$, $dimV_6 = 4$ and superdimensions $DimV_2 = 6$, $DimV_4 = -9$, $DimV_6 = 4$. Let $\mathcal{L} = \bigoplus_{N=1}^{\infty} \mathcal{L}_N$ be the free graded Lie superalgebra generated by V. The dimension of \mathcal{L}_N is zero, for N odd; for N even, $Dim\mathcal{L}_N = \Omega(N,T_{G_2})$. The dimensions satisfy the identity

$$\prod_{N=1}^{+\infty} (1 - z^N)^{-\Omega(N,T_{G_2})} = 1 - 6z^2 + 9z^4 - 4z^6$$

The enveloping algebra subspaces have dimensions given by the zeta function of G_2,

$$\prod_{N=1}^{+\infty} (1 - z^N)^{-\Omega(N,T_{G_2})} = 1 + \frac{1}{18} \sum_{n=1}^{\infty} (2^{2n+5} - 6n - 14)z^{2n}$$

References

