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Abstract

This talk reviews some new combinatorial and algebraic aspects of the zeta function
of a finite graph.

1 Introduction

The ζG(z) function (also called the Ihara zeta function) of a finite connected and oriented
graph G (the graph may have multiple edges and loops) is formally defined by

ζG(z) =
∏
[p]

(1− zN(p))−1 (1.1)

where the product is over the equivalence classes of non periodic backtrack-less and tail-
less closed paths (cycles, for short) in G, N(p) the length of a cycle in [p]. It can be
rewritten as

ζG(z)−1 =
+∞∏
N=1

(1− zN )Ω(N,T ) = det(I − zT ), (1.2)

Ω(N,T ) =
1

N

∑
g|N

µ(g)TrT
N
g . (1.3)

where N is a positive integer, µ the Möbius function: a) µ(+1) = +1, b) µ(g) = 0, if
g = pe11 ...p

eq
q , p1, ..., pq primes, and any ei > 1, c) µ(p1...pq) = (−1)q. Ω(N,T ) is the

number of equivalence classes of cycles of length N in G, T is the edge adjacency matrix
of G, g ranges over the positive divisors of N . A great deal of work has been done on this
function. I refer the reader to [7], [8] and [9] for a comprehensive overview and references
therein.

There is a remarkable resemblance between relations (1.2) and (1.3) with the famous
Witt identity and the Witt formula, respectively, which are the following:

+∞∏
N=1

(1− zN )M(N,R) = 1−Rz, (1.4)

M(N,R) =
1

N

∑
g|N

µ(g)R
N
g . (1.5)
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where R is a real number. See the introduction of [4] for a nice account about the Witt
relations. The Witt formula is also called the necklace polynomial because it solves the
problem of counting inequivalent nonperiodic colorings of a necklace with N beads with
at most R colors. See [10]. Consider the graph with a single vertex and R loops hooked to
it and with the edges directed, say, counter clockwise. Witt formula gives the number of
classes of equivalence of cycles of length N that traverse the graph counter clockwise [6].
Another interpretation of the Witt formula is as a dimension formula for the homogenous
subspaces of a graded free Lie algebra. The Poincaré-Witt-Birkoff theorem then implies
the Witt identity. See [5]. In [10] Metropolis and Rota proved that the Witt polynomials
satisfy several identities which they used to prove several important results about the
Necklace Algebra, Witt vectors, etc. Natural questions to ask are: Relations (1.2) and
(1.3) can be related to a coloring problem? Is there a connection with free Lie algebras?
Do the Ω’s satisfy some identities? It turns out that all these questions have positive
answers as I have shown in [1]. These are new aspects of the zeta function of a graph some
of which are reviewed in this talk.

In section 2.1 I show that the Ω’s satisfy several identities analogous to those satisfied
by the Witt polynomials. In section 2.2 Ω and the coefficients of the polynomial in z given
by det(1 − zT ) are interpreted as the dimensions of certain vector spaces associated to a
free Lie superalgebra. See [1] for the details. The results were obtained using ideas from
[2], [3], [7] and [10].

2 Results

2.1 Some identities

In [10] Metropolis and Rota proved that the Witt polynomials satisfy several important
identities which they used to build the necklace algebra. Theorem 2.1 shows that Ω satisfies
similar identities. Theorem 2.2 gives a generalization of the classical Strehl identity [11].

Theorem 2.1. Given the matrices T1 and T2 denote by T1⊗ T2 the Kronecker product of
T1 and T2. Then, ∑

[s,t]=N

(s, t)Ω(s, T1)Ω(t, T2) = Ω(N,T1 ⊗ T2), (2.1)

(s, t) is the maximum common divisor of s and t. The summation is over the set of all
positive integers s, t such that [s, t] = N , [s, t] the least common multiple of s, t. Also,

Ω(N,T l) =
∑

[l,t]=Nl

t

N
Ω(t, T ). (2.2)

and
(r, s)Ω(N,T

s/(r,s)
1 ⊗ T r/(r,s)2 ) =

∑
(rp, sq)Ω(p, T1)Ω(q, T2) (2.3)

The sum is over p, q such that pq/(pr, qs) = N/(r, s).
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Theorem 2.2. ∏
k≥1

[
1

det(1− zkT1)

]Ω(k,T2)

=
∏
j≥1

[
1

det(1− zjT2)

]Ω(j,T1)

(2.4)

It follows from the latter result that∏
k≥1

[
ζG1(zk)

]Ω(k,T2)
=
∏
j≥1

[
ζG2(zj)

]Ω(j,T1)
(2.5)

Theorem 2.3. ∏
n≥1

1

1− Ω(n, T )zn
=

(
1

1− z

)α
(2.6)

α =
∑
d|n

d [Ω(d, T )]n/d (2.7)

2.2 Dimension formulas

Theorem (2.4) below together with results from [3] imply that (1.2) and (1.3) can naturally
be interpreted as data associated to a Lie superalgebra.

Theorem 2.4. Define g(z) :=
∑∞

N=1
TrTN

N zN . Then,

+∞∏
N=1

(1− zN )±Ω(N,T ) = e∓g(z) = [det(1− zT )]± = 1∓
+∞∑
i=1

c±(i)zi, (2.8)

where

c±(i) =
i∑

m=1

λ±(m)
∑

a1 + 2a2 + ...+ iai = i
a1 + ...+ ai = m

i∏
k=1

(TrT k)ak

ak!kak
(2.9)

with λ+(m) = (−1)m+1, λ−(m) = +1, c+(i) = 0 for i > 2|E|, and c−(i) ≥ 0. Furthemore,

TrTN = N
∑

s∈S(N)

(±1)|s|+1 (| s | −1)!

s!

∏
c±(i)si (2.10)

where S(N) = {s = (si)i≥1 | si ∈ Z≥0,
∑
isi = N} and | s |=

∑
si, s! =

∏
si!.

In section 2.3 of [3], given a formal power series
∑+∞

i=1 tiz
i with ti ∈ Z, for all

i ≥ 1, the coefficients in the series are interpreted as the superdimensions of a Z>0-graded
superspace V =

⊕∞
i=1 Vi with dimensions dimVi = |ti| and superdimensions DimVi = ti ∈

Z. Let L be the free Lie superalgebra generated by V . Then, L =
⊕∞

N=1 LN and the
subspaces LN have dimension given by

DimLN =
∑
g|N

µ(g)

g
W

(
N

g

)
(2.11)
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where g ranges over all common divisors of N ,

W (N) =
∑

s∈S(N)

(| s | −1)!

s!

∏
t(i)si (2.12)

with S(N) as in (2.10), is called the Witt partition function. Furthermore,

∞∏
N=1

(1− zN )±DimLN = 1∓
∞∑
i=1

f±(i)zi. (2.13)

where f+(i) = t(i) and f−(i) = dimU(L)i is the dimension of the i-th homogeneous
subspace of the universal enveloping algebra U(L). Identity (2.13) (the + case) is the
generalized Witt identity.

Apply this interpretation to the determinant det(1 − zT ) which is a polynomial of
degree 2|E| in the formal variable z. It can be taken as a power series with coefficients
ti = 0, for i > 2|E|. Comparison of (2.11), (2.12), (2.13) with (2.8), (2.9), (2.10) implies
the following result:

Theorem 2.5. Given a graph G, T its edge matrix, let V =
⊕2|E|

i=1 Vi be a Z>0-graded
superspace with finite dimensions dimVi = |c+(i)| and the superdimensions DimVi =
c+(i) given by (2.9), the coefficients of det(1 − zT ). Let L =

⊕∞
N=1 LN be the free Lie

superalgebra generated by V . Then, LN has superdimension DimLN = Ω(N,T ). The
algebra has generalized Witt identity given by (1.2) and ζ(z) is the generating function for
the dimensions of the subspaces of the enveloping algebra U(L) which are DimU(L)n =
c−(n), c−(n) given by (2.9).

Example 1. G1, the graph with 2 edges counterclockwisely oriented and hooked to a
single vertex. The edge matrix for G1 is the 4× 4 symmetric matrix

TG1 =

(
A B
B A

)
where A is the 2× 2 matrix with all entries equal to 1 and B is the 2× 2 matrix with the
main diagonal entries equal to 0 and all the other entries equal to 1. In this case,

TrTNG1
= 2 + (−1)N + 3N , det(1− zTG1) = 1− 4z + 2z2 + 4z3 − 3z4

so that the number of classes of reduced nonperiodic cycles of length N is given by the
formula

Ω(N,TG1) =
1

N

∑
g|N

µ(g)
(

2 + (−1)
N
g + 3

N
g

)
Let V =

⊕4
i=1 Vi be a Z>0-graded supespace with dimensions dimV1 = 4, dimV2 = 2,

dimV3 = 4, dimV4 = 3 and superdimensions DimV1 = −4, DimV2 = 2, DimV3 = 4,
DimV4 = −3. Let L =

⊕∞
N=1 LN be the free graded Lie super algebra generated by V .

The dimension of LN is DimLN = Ω(N,TG1) which satisfies the identity

+∞∏
N=1

(1− zN )Ω(N,TG1
) = 1− 4z + 2z2 + 4z3 − 3z4
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The enveloping algebra subspaces have dimensions given by the zeta function of G1,

+∞∏
N=1

(1− zN )−Ω(N,TG1
) = 1 +

1

16

∞∑
n=1

((−1)n + 39 · 3n − 24− 12n)zn

Example 2. G2, the bipartite graph with two vertices linked by three edges likewisely
oriented from one vertex to the other. The edge matrix of G2 is as before but A has all
entries equal to zero and B is

B =

 0 1 1
1 0 1
1 1 0


The edge matrix has the trace TrTNG2

= 0 if N is odd and TrTNG2
= 4 + 2 · 2N if N is even,

and the determinant
det(1− zTG2) = 1− 6z2 + 9z4 − 4z6

If N is odd, the number of classes of nonperiodic cycles of length N is Ω(N,TG2) = 0, if
N is odd; if N is even,

Ω(N,TG2) =
1

N

∑
g|N

µ(g)TrT
N
g

G2

Let V =
⊕3

i=1 V2i be a Z>0-graded superspace with dimensions dimV2 = 6, dimV4 = 9,
dimV6 = 4 and superdimensions DimV2 = 6, DimV4 = −9, DimV6 = 4. Let L =⊕∞

N=1 LN be the free graded Lie superalgebra generated by V . The dimension of LN is
zero, for N odd; for N even, DimLN = Ω(N,TG2). The dimensions satisfy the identity

+∞∏
N=1

(1− zN )Ω(N,TG2
) = 1− 6z2 + 9z4 − 4z6

The enveloping algebra subspaces have dimensions given by the zeta function of G2,

+∞∏
N=1

(1− zN )−Ω(N,TG2
) = 1 +

1

18

∞∑
n=1

(22n+5 − 6n− 14)z2n
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