Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Uma Análise de Reticulados Bem-Arredondados em \mathbb{R}^2 via Polinômios

William Lima da Silva Pinto ¹ Matemática, UNESP, Rio Claro, SP Carina Alves ² Departamento de Matemática, UNESP, Rio Claro, SP

1 Introdução

Boa parte dos problemas na teoria dos códigos está relacionada à propriedades de reticulados. Um conjunto $\Lambda \subset \mathbb{R}^n$ é um reticulado de posto m se existem vetores linearmente independentes $v_1, \cdots, v_m \in \mathbb{R}^n$, $m \leq n$, tais que qualquer elemento $x \in \Lambda$ pode ser expresso como $x = \sum_{i=1}^m x_i v_i, \, x_i \in \mathbb{Z}$. Por motivos de aplicação, o interesse de estudo é maior quando m = n. Nesse caso, dizemos que Λ é de posto completo.

Diferentes aplicações requerem reticulados com diferentes propriedades. Entre elas, estão a alta densidade de centro e o bem-arredondamento. Esta última tem sido objeto estudo recente, como em [3,4] e está relacionado com o problema do número de contato. Formalmente, definindo $|\Lambda| = min\{||x|| : x \in \Lambda, x \neq 0\}$, a densidade de centro de um reticulado Λ é dada por

$$\delta(\Lambda) = \frac{(|\Lambda|^2/2)^n}{|\det(M)|},\tag{1}$$

onde M é a matriz cujos elementos de suas linhas são as coordenadas dos vetores da base de Λ , chamada de matriz geradora de Λ . Por outro lado, Λ é bem arredondado se o conjunto $S(\Lambda) = \{x \in \Lambda : ||x||^2 = |\Lambda|\}$ gera \mathbb{R}^n .

Reticulados bem-arredondados cumprem um importante papel em problemas de otimização discreta, [2,5]. Em [3,4], os autores investigaram a relação entre reticulados bem-arredondados e os conhecidos, reticulados obtidos via o homomorfismo canônico, com foco especial em \mathbb{R}^2 . Neste trabalho, investigamos em que condições reticulados gerados via polinômios estudados em [1], são bem-arredondados em \mathbb{R}^2 . Neste sentido, conseguimos também uma condição para os coeficientes de um polinômio de grau 2 de modo a obter reticulados com a maior densidade de centro em \mathbb{R}^2 .

 $^{^{1}} william lima.unesp.rc@gmail.com\\$

²carina.alves@unesp.br

2 Reticulados Bem-Arredondados em \mathbb{R}^2 via Polinômios

É bastante convencional o uso do homomorfismo canônico para gerar reticulados em \mathbb{R}^2 . Para tal, dado um corpo de números K, aplicamos em uma base integral de K o \mathbb{Q} -homomorfismo $\sigma: K \to \mathbb{R}^n$ definido por

$$\sigma(x) = (\sigma_1(x), \dots, \sigma_{r_1}(x), \Re \sigma_{r_1+1}(x), \Im \sigma_{r_1+1}(x), \dots, \Re \sigma_{r_1+r_2}(x), \Im \sigma_{r_1+r_2}(x)), \quad (2)$$

onde $\Re(x)$ e $\Im(x)$ representam as partes real e imaginária de x, respectivamente. Os monomorfismos $\sigma_j(K) \subset \mathbb{R}$, para $j = 1, \dots, r_1$ e $\sigma_{r_1 + r_2 + j} = \overline{\sigma_{r_1 + j}}$, para $j = 1, \dots, r_2$.

A relação entre reticulados obtidos via homomorfismo canônico e reticulados bemarredondados em \mathbb{R}^2 foi consistentemente apresentada em [3, 4]. No presente trabalho, investigamos a relação entre reticulados obtidos via polinômios e reticulados bemarredondados.

Seja $f(x)=x^2+ax+b$, em que $a,b\in\mathbb{Z}$, um polinômio com raízes reais distintas α e β . Definimos por Λ_f o reticulado gerado pela base $\{(\alpha,\beta),(\beta,\alpha)\}$. Se $x=x_1(\alpha,\beta)+x_2(\beta,\alpha)$, com $x_1,x_2\in\mathbb{Z}$, então $||x||^2=(a^2-2b)(x_1^2+x_2^2)+4b(x_1x_2)$. O objetivo é identificar quando $|S(\Lambda_f)|\geq 4$, situação em que Λ_f é bem arredondado.

Quando $a^2 = -2b$ ou $a^2 = 6b$, obtivemos que $|S(\Lambda_f)| = 6$, neste caso, verificamos que Λ_f tem a melhor densidade de centro possível para a dimensão 2.

Quando f tem raízes complexas conjugadas $\alpha \pm i\beta$, definimos Λ_f como sendo o reticulado gerado pela base $\{(\alpha, \beta), (\alpha, -\beta)\}$. A investigação é análoga e neste caso, obtivemos que Λ_f tem a melhor densidade de centro para a dimensão 2 se, e somente se, $a^2 = -b$ (se b < 0) ou $a^2 = 3b$ (se $b \ge 0$).

Agradecimentos

Agradeço à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), processo nº 2018/12702-3 pelo apoio financeiro e a minha orientadora, Profa. Dra. Carina Alves, pela ajuda e incentivo.

Referências

- [1] C. Alves, C. W. O. Benedito e W.L.S. Pinto. Reticulados via polinômios de grau 2 e 3. Revista Eletrônica Paulista de Matemática, 10: 39-52, 2017.
- [2] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3a. edition. Springer-Verlag, New York, 1999.
- [3] L. Fukshansky, G. Henshaw, P. Lao, M. Prince, X. Sun and S. Whitehead. On well-rounded ideal lattices II, *International Journal of Number Theory*, 9:139-154, 2019.
- [4] L. Fukshansky and K. Petersen. On Well-Rounded Ideal Lattices. *Journal of Number Theory*, 8 (1): 189–206, 2012.
- [5] J. Martinet, Perfect Lattices in Euclidean Spaces, Springer-Verlag, 2003.