Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Triangulação Aguda Própria de Superfícies Poliédricas

Amanda Lopes Barreto ¹ Curso de Matemática, UFMS/CPPP, Mato Grosso do Sul, MS Wellington Carlos de Jesus ² Curso de Matemática, UFMS/CPPP, Mato Grosso do Sul, MS

1 Introdução

Uma triangulação aguda (ou não obtusa) é a subdivisão de um polígono ou superfície em triângulos cujos ângulos são todos menores (respectivamente, não maiores) que $\frac{\pi}{2}$. Burado e Zagaller provam a existência de triangularizações agudas de superfícies poliédricas bidimensionais arbitrárias [1], contudo, o trabalho concentrou-se na existência de triangularizações e não no número mínimo de triângulos necessários. Essas triangulações são importantes na investigação e discretização de algumas equações diferenciais [2]. Temos como objetivo neste trabalho o estudo do teorema de existência de triangularizações agudas de superfícies poliédricas bidimensionais arbitrárias desenvolvido em [3] visando estudar a viabilidade de algoritmos computacionais geradores de malha.

2 Triangulação própria não obtusa ou aguda

Seja Σ uma superfície poliédrica. Dizemos que temos uma triangulação própria de Σ quando suas arestas originais são usadas na triangulação. Dado que cada uma das faces de Σ são polígonos, cada face pode ser triangularizada usando apenas triângulos não obtusos, mas não é obvio se Σ admite uma triangulação própria não obtusa. Saraf apresenta os seguintes resultados [4].

Teorema 2.1 Toda superfície Σ admite uma triangulação própria não obtusa.

Além disso, demonstra que todo triângulo com pelo menos um vértice na fronteira de uma face de Σ é um triângulo agudo. Maehara [3], usando os resultados de Saraf [4], demonstra alguns resultados para uma triangulação própria aguda.

Proposição 2.1 Se Σ admite uma triangulação própria com ν triângulos não obtusos, então Σ admite uma triangulação própria aguda com no máximo 12ν triângulos.

 $^{^{1}}$ dinha_amanda10@hotmail.com

 $^{^2} wellington.jesus@ufms.br\\$

2

Além disso, apresenta informações sobre o número máximo de triângulos suficientes para a triangulação.

3 Triangulação própria induzida por um ciclo de discos

Uma sequência de k discos D_0 , D_1 , \cdots , D_{k-1} ($k \ge 3$) nos planos é chamada um *ciclo* de k discos se entre os k discos não existe sobreposição e cada D_i é tangente apenas com D_{i-1} e D_{i+1} (com subíndices tomados módulo k). Para um ciclo de k discos, um k-agono é obtido pela conexão dos centros dos discos tangentes de um ciclo de k discos. O método de empacotamento de discos é usado para recobrir uma superfície poliédrica Σ com ciclos de discos. Usando esses ciclos podemos demonstrar o seguinte resultado [3].

Teorema 3.1 Toda superfície poliédrica Σ admite triangulação aguda com no máximo $C\left(\frac{L}{\delta\theta}\right)n$ triângulos, onde C é uma constante absoluta, L é o comprimento da maior aresta de Σ , δ é a menor distância geodésica entre um vértice e uma aresta que não é incidente ao vértice, e θ é o menor dos ângulo das faces de Σ .

4 Algoritmo de geração de malha triangular aguda

As triangulações geradas pelos algoritmos atuais (por exemplo DistMesh, o gerador de malha DUNE, etc) não satisfazem necessariamente essa condição de ângulo [2], mesmo aqueles algoritmos que dedicam-se exclusivamente a esse fim relatam dificuldade ou impossibilidade de obter uma malha com triangulação aguda em determinadas situações [5]. Entretanto, o estudo das etapas construtivas, usadas nas demonstrações desse trabalho, podem inspirar algoritmos computacionais para a triangulação aguda de superfícies poliédricas em trabalhos futuros.

Referências

- [1] Y. D. Burago, V. A. Zalgaller. Polyhedral embedding of a net, *Vestnik Leningrad*. *Univ.* 15 (in Russian), 66-80, 1960.
- [2] B. Kovács. Computing arbitrary Lagrangian Eulerian maps for evolving surfaces, Numerical Methods for Partial Differential Equations, 35(3): 1093-1112, 2018. DOI: 10.1002/num.22340.
- [3] H. Maehara. On a proper acute triangulation of a polyhedral surface, *Discrete Mathematics*, 311(17):1903-1909, 2011. DOI: 10.1016/j.disc.2011.05.012
- [4] S. Saraf. Acute and nonobtuse triangulations of polyhedral surfaces, European Journal of Combinatorics, 30(4):833-840, 2009. DOI: 10.1016/j.ejc.2008.08.004.
- [5] E. VanderZee, A. N. Hirani, D. Guoy, and E. A. Ramos. Well-centered triangulation. SIAM Journal on Scientific Computing. 31(6):4497-4523, 2010.

010300-2 © 2020 SBMAC