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1 Introduction

Cancer modeling is a class of diseases that span mechanisms occuring in different time
and space scales. Current modeling framework combines continuum models and individual
based models to better represent such heterogeneous multiscale dynamics. Due to inherent
uncertainties involved in this kind of problem, Bayesian inference for parameters estimation
[1] is an adequate methodology since it allows taking into account uncertanties due to
the presence of error in the measurements as well as model inadequacies. It relies on
simulating the forward model for many possible different configurations of the parameter
set, which can lead to an overwhelming computational burden. Surrogate models have
been developed in the literature to alleviate this issue. According to the source, this
approach can be also named as a metamodel, reduced model, response surface, among
others. The general idea is to build surrogates for the quantity of interest that can be
cheaply and accurately evaluated without requiring to run expensive models. The accuracy
of such strategy for Bayesian inference is still an open issue [3].

Surrogate models can be obtained through simplifications of the physical problem (hi-
erarchical models), projections of the governing equations onto an appropriate reduced
vector basis (projection models), or directly using the available data (data-driven mod-
els). Here we investigate a data-driven approach namely the Gaussian Process Regression
(GPR) [1]. Unlike classical regression schemes that assume a simplified model to represent
the input data and compute the function coefficients to minimize a choosen error measure
(mean squared error, e.g.), GPR is known as a non-parametric approach. Specifically, given

a data set y = {y(1), . . . , y(n)} at x = {x(1), . . . , x(n)} and assuming y(i) = h(x(i)) + σ(i),

where h(x(i)) is a candidate function evaluated at x(i) and σ(i) ∼ N (0, σ2noise) is the noise, a
desired prediction h∗ and the data y form the following multivariate Gaussian distribution:[

y
h∗

]
∼ N

(
0,

[
K + σ2

noiseI KT
∗

K∗ K∗∗

])
,

in which Kij = k(x(i), x(j)), K∗ = k(x(∗), x(i)), i, j = 1, . . . , n, and K∗∗ = k(x(∗), x(∗)). The
choice of the kernel k(x, x′) plays a major role in this model approach. Typical choices

1jvos@lncc.br
2rcca@lncc.br
3rssr@lncc.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 7, n. 1, 2020.

Trabalho apresentado no XXXIX CNMAC, Uberlândia - MG, 2019.

010324-1 © 2020 SBMAC



2

are the squared exponential and rational quadratic kernels given by:

kSE(x, x′) = σ2
f exp

(
−(x− x′)2

2λ2f

)
, kRQ(x, x′) = σ2

e

(
1 +
−(x− x′)2

2αrλ2e

)−αr

in which and σf , λf , σe, αr and λe are hyperparameters. The predictions h∗ are ob-
tained by sampling from the posterior distribution h∗|y ∼ N (K∗(K+σ2noiseI)−1y, K∗∗−
K∗(K + σ2noiseI)−1KT

∗ ). Some examples of GPR application are shown in Figure 1.
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(a) Squared exponential ker-
nel: (σf , λf ) = (1.3, 1.04)

−3 −2 −1 0 1 2

−2

0

2

(b) Squared exponential ker-
nel: (σf , λf ) = (13, 5)
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(c) Rational quadratic kernel:
(σe, αr, λe)
= (1, 2.2e+7, 0.85)

Figure 1: Gaussian process regression using an input data (red) with noise of σnoise = 0.3.
There are noticeable differences in the resulting mean function (blue) and 95% confidence
interval (shadow) depending on the choices made for the kernel function and hyperparam-
eters.

2 Objective

The underlying aspects of the GPR method will be analyzed in this work. The use of
distinct kernel functions and the optimal selection of their hyperparameters will be inves-
tigated, as well as the numerical algorithms used in the calculations needed to compute
the method’s associated posterior distribution. By realizing this analysis, this work aims
to detail the benefits and difficulties of using GPR as a surrogate metamodel in a tumor
growth problem.
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