Trabalho apresentado no XXXIX CNMAC, Uberlândia - MG, 2019.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

A Delay Differential Equations model for *Wolbachia* infection in *Aedes aegypti* populations 1

Antone dos Santos Benedito² Universidade Estadual Paulista (UNESP), IBB, Câmpus Rubião Júnior (Botucatu) Mostafa Adimy³ INRIA, Lyon, France Claudia Pio Ferreira⁴ Universidade Estadual Paulista (UNESP), IBB, Câmpus Rubião Júnior (Botucatu)

1 Introduction

Currently, *Wolbachia* is one of the most studied reproductive parasite of arthropod species and appears to be a promising candidate for biocontrol of some mosquito carried diseases, especially by *Aedes aegypti*. A mathematical model inspired by Nicholson-type delay equations is proposed to investigate the relation between temperature variation (implicit into maturation time) and population dynamics of both transinfected by a Wolbachia strain and uninfected *Aedes aegypti* mosquitoes. We analyze the existence and local stability of equilibria with and without delay.

2 Model

Let w and n be, respectively, the number of *Wolbachia* infected and uninfected individuals. Our model consists in

$$\dot{w}(t) = P_w e^{-\mu\tau} w(t-\tau) e^{-(w(t-\tau)+n(t-\tau))\eta} - \delta_w w(t), \dot{n}(t) = (P_n n(t-\tau) + P_{nw} w(t-\tau)) e^{-\mu\tau} e^{-(w(t-\tau)+n(t-\tau))\eta} - \delta_n n(t),$$
(1)

being $P_w, P_{nw}, P_n, \bar{\mu}, \mu, \tau, \eta, \delta_w, \delta_n > 0$ and

$$(w(s), n(s)) = (\varphi_w(s), \varphi_n(s)), \quad s \in [-\tau, 0],$$

$$(2)$$

where $\varphi_w, \varphi_n : [-\tau, 0] \to [0, \infty)$ are continuous.

¹FAPESP 18/24058-1

²antone.santos@unesp.br

 $^{^3} mostafa.adimy@inria.fr$

⁴claudia.pio@unesp.br

2

The immature development time (duration of aquatic phase of mosquito) τ and the death rate of the immature phase μ are the same for both infected and uninfected populations since the *Wolbachia* infection does not affect the immature stage [4]. P_w denotes the birth rate for infected newborns generated by infected adults, P_{nw} the birth rate for uninfected newborns generated by infected adults and P_n the birth rate for uninfected newborns generated by infected adults. Fertility depends on the number of individuals at time $t - \tau$, namely $w(t - \tau)$ and $n(t - \tau)$. Also, $e^{-\mu\tau}$ takes into account an individual survival up to age τ [2, 3]. Interspecific competition is modelled by $e^{-(w(t-\tau)+n(t-\tau))^{\eta}}$, where η measures how rapidly carrying capacity is achieved [1]. Last, δ_w and δ_n are the mortality rates of adult infected and uninfected mosquitoes, respectively.

3 Previous results

The model presents the positive, *Wolbachia*-free and trivial steady states for the system: $\mathbf{S_2} = \left(\left[\ln \left(\frac{P_w}{\delta_w} \right) - \mu \tau \right]^{\frac{1}{\eta}} \frac{\delta_n P_w - \delta_w P_n}{\delta_n P_w + \delta_w (P_{nw} - P_n)}, \left[\ln \left(\frac{P_w}{\delta_w} \right) - \mu \tau \right]^{\frac{1}{\eta}} \frac{\delta_w P_{nw}}{\delta_n P_w + \delta_w (P_{nw} - P_n)} \right),$ $\mathbf{S_1} = \left(0, \left[\ln \left(\frac{P_n}{\delta_n} \right) - \mu \tau \right]^{\frac{1}{\eta}} \right)$ and $\mathbf{S_0} = (0, 0).$

By determining the thresholds τ_0 , τ_1 and τ_2 , we prove that: i) $\mathbf{S_0}$ always exists; ii) for $\tau < \tau_1$, $\mathbf{S_1}$ is possible; iii) for $\tau < \tau_2$, $\mathbf{S_2}$ is possible since $\tau_1 < \tau_2$; iv) if $\mathbf{S_0}$, $\mathbf{S_1}$ and $\mathbf{S_2}$ or just $\mathbf{S_0}$ and $\mathbf{S_2}$ coexist, $\mathbf{S_2}$ is locally stable, vi) if $\mathbf{S_0}$ and $\mathbf{S_1}$ coexist, then $\mathbf{S_1}$ is locally stable. Moreover, based on well established fact that the development time varies conversely with temperature, we show that for low temperatures ($\tau > \tau_0$) the only possibility is the extinction of both mosquito populations (global stability of $\mathbf{S_0}$).

Acknowledgements

A.S.B. thanks CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the financial support.

References

- C. Dye, Models for the Population Dynamics of the Yellow Fever Mosquito, Aedes aegypti. Journal of Animal Ecology, 53: 247-268, 1984.
- [2] M. Iannelli, A. Pugliese, An Introduction to Mathematical Population Dynamics, Spring, 2014.
- [3] M. J. Keeling, F. M. Jiggins, J. M. Read, The invasion and coexistence of competing Wolbachia strains, *Heredity*, 91: 382-8, 2003.
- [4] M. Ndii, m., R. Hickson, G. Mercer, Modelling the introduction of Wolbachia into Aedes aegypti mosquitoes to reduce dengue transmission, *The ANZIAM Journal*, 53(3): 213-227, 2012.