# Método TLS Truncado para o Problema de Espectroscopia de Ressonância Magnética

#### Jonathan Ruiz Quiroz

UFSC - Departamento de Matemática Campus Trindade 88040-900, Florianópolis, SC E-mail: Jonathan17r@gmail.com. Fermín S. V. Bazán UFSC - Departamento de Matemática Campus Trindade 88040-900, Florianópolis, SC E-mail: fermin@mtm.ufsc.br

**Resumo:** No problema de quadrados mínimos min ||Ax - b||, com  $A \in \mathbb{R}^{m \times n}$ ,  $m \ge n$ ,  $e \ b \in \mathbb{R}^m$ , é assumido frequentemente que a matriz A é exata e o vetor b é contaminado por erros. Esta hipótese não é sempre realista, pois existen problemas onde a matriz A também é sujeita a erros. Uma maneira de lidar com problemas desta natureza é através de método de Quadrados Mínimos Totais (TLS). Neste trabalho usamos o método TLS para resolver o problema de espectroscopia em ressonância magnética e apresentamos uma comparação de resultados obtidos com o método dos Quadrados Mínimos (LS).

Palavras-chave: SVD, Quadrados mínimos totais, Espectroscopia em Ressonância Magnética
1 Introdução

Problemas que envolvem matrizes contaminadas por ruídos aparecem em áreas das ciências, como biologia, física e engenharia. Nesses casos a técnica de quadrados mínimos pode produzir resultados insatisfatórios. Golub e Van Loan [3] e Van Huffel e Vandewalle [7] desenvolveram uma análise do problema para o caso em que ambos a matriz A e o vetor b contém incertezas e introduziram o método de Quadrados Mínimos Totais. Para entender a filosofia da técnica TLS, é conveniente introduzir a solução do problema de Quadrados Mínimos (LS) dada por

$$x_{LS} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \|Ax - b\|.$$

A solução  $x_{LS}$  pode ser determinada a través da Descomposição em Valores Singulares (SVD) da matriz A [4]:  $A = U\Sigma V^T$ , onde  $U = [u_1, \ldots, u_m] \in \mathbb{R}^{m \times m}$ ,  $V = [v_1, \ldots, v_n] \in \mathbb{R}^{n \times n}$  são matrizes ortogonais e  $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$ , onde os números  $\sigma_i$  são os valores singulares de A e são ordenados de modo que  $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$ . Se o vetor de dados é da forma  $b = b_{exato} + e$ , com  $b_{exato}$  o vetor sem pertubações e e o vetor de incertezas, e posto(A) = n, usando a SVD obtemos

$$x_{LS} = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i. \tag{1.1}$$

Devido à divisão por pequenos valores singulares, a solução  $x_{LS}$  pode ser dominada por componentes associadas ao vetor de erros *e*. Portanto, é necessário estabilizar a solução. Uma maneira de amenizar o efeito da influência do erro na solução é truncando a soma em (1.1) para  $s \leq n$ termos:

$$x_{LS}^s = \sum_{i=1}^s \frac{u_i^T b}{\sigma_i} v_i, \qquad (1.2)$$

onde s, chamado índice de truncamento, é escolhido de modo que exista um balanço apropriado entre a qualidade da informação do problema que é capturada e a quantidade de erro que é incluída na solução. Este método é conhecido como o método da SVD Truncada (TSVD) [5].

O desenvolvimento da técnica TLS foi motivada por problemas lineares  $Ax \approx b, m > n$ , onde ambos a matriz A e o vetor b são contaminados por erros. Para amenizar a presença dos erros a técnica TLS considera a matriz aumentada  $[A \ b]$  e procura por algum vetor não nulo x tal que

$$\begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} = 0. \tag{1.3}$$

Obviamente, o problema acima tem solução  $x \neq 0$  só quando o espaço nulo da matriz aumentada é distinto do espaço trivial, o que não é satisfeito em geral quando ambos A e b são contaminados por erros. Para contornar esta incompatibilidade a técnica TLS considera a SVD da matriz ampliada

$$\begin{bmatrix} A & b \end{bmatrix} = \overline{U} \ \overline{\Sigma} \ \overline{V}^{\mathrm{T}},\tag{1.4}$$

e particiona as matrizes  $\overline{V}$  e  $\overline{\Sigma}$  como:

$$\overline{V} = [\overline{v}_1, \dots, \overline{v}_{n+1}] = \begin{bmatrix} \overline{V}_{11} & \overline{v}_{12} \\ \overline{v}_{21}^T & \overline{v}_{22} \end{bmatrix}, \quad \overline{\Sigma} = \begin{bmatrix} \overline{\Sigma}_1 & 0 \\ 0 & \overline{\sigma}_{n+1} \\ 0 & 0 \end{bmatrix}, \quad (1.5)$$

em que  $\overline{V}_{11}, \overline{\Sigma}_1 \in \mathbb{R}^{n \times n}$  e  $\overline{v}_{12}, \overline{v}_{21} \in \mathbb{R}^n$ . Se  $\overline{\sigma}_{n+1} \neq 0$ , então posto $([A \ b]) = n + 1$ , e o espaço nulo da matriz ampliada é trivial, logo o conjunto de equações (1.3) não é compatível. Para obter uma solução, o posto da matriz aumentada,  $[A \ b]$  deve ser reduzido de n + 1 par n e isto pode ser feito aproximando  $[A \ b]$  por uma matriz  $[A_n \ b_n]$  de posto n. O método TLS procura por um matriz  $\tilde{A}$  e um vetor  $\tilde{b}$  tais que

$$\min_{\substack{[\tilde{A} \ \tilde{b}] \in \mathbb{R}^{m \times (n+1)} \\ \tilde{A}r = \tilde{b}}} \| [A \quad b] - [\tilde{A} \quad \tilde{b}] \|_F^2,$$
(1.6)

onde a  $||\cdot||_F$  denota a norma Frobenius de uma matriz. A solução do problema de minimização (1.6) é dado pelo teorema de Eckart-Young-Mirsky [7]:

$$\begin{bmatrix} A_n & b_n \end{bmatrix} = \sum_{i=1}^n \overline{\sigma}_i \overline{u}_i \overline{v}_i^T, \tag{1.7}$$

que é a matriz de posto n mais próxima de  $\begin{bmatrix} A & b \end{bmatrix}$  no sentido da norma Frobenius, satisfazendo

$$[A \quad b] - [A_n \quad b_n] = \overline{\sigma}_{n+1}\overline{u}_{n+1}\overline{v}_{n+1}^T, \quad \text{com} \quad \|[A \quad b] - [A_n \quad b_n]\|_F = \overline{\sigma}_{n+1}.$$

O sistema homogêneo (1.3) é então substituido pelo sistema homogêneo com matriz de posto n,  $\begin{bmatrix} A_n & b_n \end{bmatrix}$ , e usando o fato de que  $v_{n+1} \in \mathcal{N}(\begin{bmatrix} A_n & b_n \end{bmatrix})$ , se  $\begin{bmatrix} \overline{v}_{n+1} \end{bmatrix}_{n+1} \neq 0$ , temos que

$$\begin{bmatrix} x\\-1 \end{bmatrix} = -\frac{1}{[\overline{v}_{n+1}]_{n+1}}\overline{v}_{n+1}.$$
(1.8)

Portanto, usando (1.5) temos que a solução TLS pode ser expressa como:

$$x_{TLS} = -\frac{\overline{v}_{12}}{\overline{v}_{22}}.$$
(1.9)

Note que se  $\overline{\sigma}_{n+1} = 0$ , então  $[A \ b]$  tem posto n. Neste caso o sistema é compatível e não precisamos aproximar a matriz ampliada. Também, se  $\overline{\sigma}_{n+1}$  é um valor singular simple, temos que  $\mathcal{N}([A_n \ b_n]) = span\{\overline{v}_{n+1}\}$  e a solução TLS é única.

Neste trabalho, apresentamos um estudo comparativo das técnicas LS e TLS aplicadas ao problema de espectroscopia de ressonância magnética, para o caso em que a matriz  $\begin{bmatrix} A & b \end{bmatrix}$  tem dados inexatos.

## 2 Método de Quadrados Mínimos Totais Truncado

O método TLS truncado é similar ao método TSVD visto acima. Quando os menores valores singulares de  $\begin{bmatrix} A & b \end{bmatrix}$  são muito pequenos, truncamos a partir de un índice k. Para determinar o índice k adequado é necessário usar algum método que permita estabelecer um bom balanço entre a qualidade da solução e o tamanho do resíduo. Pelo teorema de Eckart-Young-Mirsky a matriz

$$\begin{bmatrix} A_k & b_k \end{bmatrix} = \sum_{i=1}^k \overline{\sigma}_i \overline{u}_i \overline{v}_i^2$$

é a melhor aproximação de posto k da matriz  $\begin{bmatrix} A & b \end{bmatrix}$  no sentido da norma Frobenius. O espaço nulo da matriz aproximação é dado por:

$$\mathcal{N}(\begin{bmatrix} A_k & b_k \end{bmatrix}) = span\{\overline{v}_{k+1}, \dots, \overline{v}_{n+1}\},\$$

que fornece a partição

$$\overline{V} = [\overline{v}_1, \dots, \overline{v}_{n+1}] = \begin{bmatrix} \overline{V}_{11} & \overline{V}_{12} \\ \overline{v}_{21}^T & \overline{v}_{22}^T \end{bmatrix},$$
(2.1)

onde  $\overline{V}_{11} \in \mathbb{R}^{n \times k}, \ \overline{V}_{12} \in \mathbb{R}^{n \times (n-k+1)},$  e

$$\overline{v}_{21} = [[\overline{v}_1]_{n+1}, \dots, [\overline{v}_k]_{n+1}]^T \in \mathbb{R}^k,$$
  
$$\overline{v}_{22} = [[\overline{v}_{k+1}]_{n+1}, \dots, [\overline{v}_{n+1}]_{n+1}]^T \in \mathbb{R}^{n-k+1}$$

Procuramos por uma solução no núcleo de  $[A_k \ b_k]$ . Usando o método em [1] se  $\overline{v}_{22} \neq 0$  temos que a solução TLS é

$$x_{TLS}^{k} = -\frac{1}{\|\overline{v}_{22}\|^2} \overline{V}_{12} \overline{v}_{22}.$$
 (2.2)

í imediato provar que a norma da solução TLS truncada satisfaz  $||x_{TLS}^k||^2 = \frac{1}{||\overline{v}_{22}||^2} - 1$  e que a norma do resíduo é  $||R_k||_F^2 = ||[A \quad b] - [A_k \quad b_k]||_F^2 = \overline{\sigma}_{k+1}^2 + \ldots + \overline{\sigma}_{n+1}^2$ . Isso mostra que a norma da solução  $||x_{TLS}^k||$  cresce como uma função de k, e que a norma do residuo  $||R_k||_F$  decresce. Este comportamento sugere usar o Principio da Discrepancia ou o Método da Curva L [1] para encontrar o índice de truncamento k adequado.

#### 3 Resultados Numéricos Preliminares

Nesta seção apresentamos um estudo comparativo da eficiência dos métodos LS e TLS quando aplicados a um problema da área de espectroscopia de ressonância magnética (MRS). Neste caso a matriz de dados A tem estrutura Hankel, i.e., as entradas são definidas como  $a_{i,j} = h_{i+j-1}$ 

$$A = \begin{bmatrix} h_1 & h_2 & \dots & h_n \\ h_2 & h_3 & \dots & h_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ h_n & h_{n+1} & \dots & h_{n+m} \end{bmatrix}$$

e  $b = [h_0, \dots, h_{n-1}]^T$ , onde  $n + m \le q$ , e  $h_k$  é um sinal modelado por

$$h_k = \sum_{j=1}^p c_j e^{\iota \phi j} e^{(\alpha_j + \iota \omega_j) k \Delta t}, \quad \iota = \sqrt{-1}, \quad k = 0, 1, \dots, q.$$

O problema consiste em estimar os parâmetros  $\alpha_j$ ,  $\beta_j$ ,  $\phi_j$ , e  $c_j$ , a partir de medidas experimentais do sinal  $h_k$ . Se  $h_k$  é livre de erros, é conhecido que posto(A) = p e a solução de norma mínima do problema min ||Ax-b|| pode ser usada para estimar as constantes de interesse a través de técnicas de predição linear [2]. A principal dificuldade do problema é que, como o sinal experimental é da forma  $\tilde{h}_k = h_k^{\text{exato}} + e_k$ , então a matriz é da forma  $\tilde{A} = A + E$ , com posto completo e vetor de dados é  $\tilde{b} = b^{\text{exato}} + e$ . Maiores informações podem ser encontradas na referência [2].

Para nosso exemplo consideramos os valores da tabela 1, com p = 11, m = n = 256, q = 600,  $\Delta t = 0.000333$  e  $\phi_i = \xi_i \pi/180$ .

| j  | $c_j$ | $\xi_j$ (graus) | $lpha_j$ | $\omega_j/2\pi$ (Hz) |
|----|-------|-----------------|----------|----------------------|
| 1  | 75    | 135             | 50       | -86                  |
| 2  | 150   | 135             | 50       | -70                  |
| 3  | 75    | 135             | 50       | -54                  |
| 4  | 150   | 135             | 50       | 152                  |
| 5  | 150   | 135             | 50       | 168                  |
| 6  | 150   | 135             | 50       | 292                  |
| 7  | 150   | 135             | 50       | 308                  |
| 8  | 150   | 135             | 25       | 360                  |
| 9  | 1400  | 135             | 285      | 440                  |
| 10 | 60    | 135             | 25       | 490                  |
| 11 | 500   | 135             | 200      | 530                  |

Tabela 1: Valores exatos para o sinal MRS

Consideramos matriz perturbada  $\tilde{A}$ , sendo  $\tilde{A} = A + \sigma \mathcal{E}$ , onde  $\mathcal{E}$  é uma matriz de ruido gaussiano,  $\sigma$  é o desvio padrão nas partes real e imaginária. Note que a matriz exata A tem posto 11.

A figure abaixo mostra a parte real do sinal usado no experimento.



Figura 1: Sinal pura

Figura 2: Sinal Perturbada

Apresentamos resultados obtidos com a técnica LS truncada e TLS truncada usando em ambos os casos o índice de truncamento k = 11, considerando vários valores do desvio padrão.

A qualidade das soluções  $x_{LS}$ ,  $x_{TLS}$  em termos de erro relativo e resíduos relativos com respeito à solução original  $x_0$  são mostrados na tabela 2 e ilustrados graficamente na figura 3.

| $\sigma$ | $  x_{LS} - x_0   /   x_0  $ | $  x_{TLS} - x_0   /   x_0  $ | $  Ax_{LS} - b   /   b  $ | $\ Ax_{TLS} - b\ /\ b\ $ |
|----------|------------------------------|-------------------------------|---------------------------|--------------------------|
| 2        | 0.0162765                    | 0.0163174                     | 0.0020342                 | 0.0020571                |
| 4        | 0.0326695                    | 0.0327974                     | 0.0039712                 | 0.0040338                |
| 6        | 0.0492881                    | 0.0495050                     | 0.0058708                 | 0.0059408                |
| 8        | 0.0662289                    | 0.0665041                     | 0.0078041                 | 0.0077932                |
| 10       | 0.0835820                    | 0.0838643                     | 0.0098491                 | 0.0096115                |
| 12       | 0.1014382                    | 0.1016722                     | 0.0120859                 | 0.0114216                |
| 14       | 0.1198999                    | 0.1200591                     | 0.0145900                 | 0.0132551                |
| 16       | 0.1391069                    | 0.1392916                     | 0.0174291                 | 0.0151501                |
| 18       | 0.1593645                    | 0.1603396                     | 0.0206730                 | 0.0171669                |

Tabela 2: Erro relativo e Resíduo relativo



Figura 3: Resíduo relativo

Vemos que os erros relativos associados as soluções LS e TLS são muito próximos. No caso do resíduo relativo, vemos que para valores grandes de  $\sigma$  a solução TLS é melhor.

As estimativas dos valores dos parâmetros  $\alpha \in \omega$ são apresentados na tabela 3 e graficamente nas figuras 4 e 5.

| Tabela 3: | Erros | Relativos |
|-----------|-------|-----------|
|-----------|-------|-----------|

| σ  | $\ \widetilde{\alpha}_{LS} - \alpha\  / \ \alpha\ $ | $\ \widetilde{\alpha}_{TLS} - \alpha\  / \ \alpha\ $ | $\ \widetilde{\omega}_{LS} - \omega\  / \ \omega\ $ | $\ \widetilde{\omega}_{TLS} - \omega\  / \ \omega\ $ |
|----|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|
| 2  | 0.0057111                                           | 0.0061896                                            | 0.0003957                                           | 0.0004067                                            |
| 4  | 0.0101561                                           | 0.0117233                                            | 0.0007376                                           | 0.0007801                                            |
| 6  | 0.0140621                                           | 0.0166266                                            | 0.0010293                                           | 0.0011192                                            |
| 8  | 0.0184575                                           | 0.0209818                                            | 0.0012792                                           | 0.0014233                                            |
| 10 | 0.0244831                                           | 0.0249581                                            | 0.0015022                                           | 0.0016927                                            |
| 12 | 0.0330535                                           | 0.0288461                                            | 0.0017201                                           | 0.0019288                                            |
| 14 | 0.0447341                                           | 0.0330901                                            | 0.0019607                                           | 0.0021337                                            |
| 16 | 0.0598983                                           | 0.0383309                                            | 0.0022535                                           | 0.0023098                                            |
| 18 | 0.0790414                                           | 0.0456766                                            | 0.0026299                                           | 0.0024639                                            |



Figura 4: Amplitude

Figura 5: Frequência

Vemos que ambos os métodos fornecem boas estimativas das frequências  $\omega$  independente do valor de  $\sigma$ . A mesma observação vale para os parâmetros  $\alpha$  quando  $\sigma$  é pequeno. Porém, para valores maiores de  $\sigma$ , vemos que o método TLS proporciona uma melhor precisão, confirmando que o método TLS é uma excelente alternativa para problemas onde o ruído afeta a matriz e o vetor de dados.

### Referências

- [1] A. Doicu, T. Trautmann, and F. Schreier, "Numerical Reguralization for Atmospheric Inverse Problems", Springer-Verlag Berlin Heidelberg, pp. 254-256, 2010.
- [2] F. S. Bazán V., CGLS-GCV: a hybrid algorithm for low-rank-deficient problems, Applied Numerical Mathematics, Vol. 47, pp. 91-108, 2003.
- [3] G. H. Golub, and C. F. Van Loan, An analysis of the total least square problem, SIAM J. Number. 6, Anal., Vol. 17, pp. 883-893, 1980.
- [4] G. H. Golub, AND C. F. Van Loan, "Matriz Computations". 3.ed Maryland: Jhon Hopkins University Press, 1996.
- [5] P. C. Hansen, "Rank-deficient and discrete ill-possed problems", Philadelphia: SIAM, 1998.
- [6] P. C. Hansen, "Discrete inverse problems: Insight and algorithm", Philadelphia: SIAM, 2010.
- [7] S. Van Huffel. and J. Vandewalle, "The Total Least Square Problems Computational Aspects and Analysis", SIAM, Philadelphia, PA, 1991.