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Abstract: The objective of this work is to propose mathematical models for the Integrated Lot
Sizing and Scheduling Problem (ILSP) considering a production process involving one stage, one
machine and considering sequence dependent set up times and costs. An ilustrative example is
used to study the computational behavior of the models when the instances are solved by a general
purpose software.
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1 Introduction

In a manufacturing environment, production planning and scheduling deal with critical de-
cisions such as lot sizing and sequencing of multiple products on capacity-constrained resources.
Specifically, these decisions are concerned with determining the production quantities, production
timing, and production order of the individual items to meet the estimated demand requirements
over the planning horizon. Most practical scheduling problems involve setup times or costs. Be-
cause of their importance to the industry and because of the challenges they present to solution
methodologies, lot sizing and scheduling problems that involve a sequence dependent setup have
attracted attention from many researchers.

Standard models for the lot sizing and for the scheduling problems have been increasingly
refined to integrate lot sizing and scheduling decisions [3]. Integrated models have been pro-
posedfor example, by [1] in the glass container industry, [8] for the animal feed supplements
industry, and [4] for the soft drink industry. Two main strategies have been used to model the
scheduling decisions. The first one is a small bucket strategy based on the GLSP model ((General
Lotsizing and Scheduling Problem) [5]. The second strategy is a big bucket one and to obtain the
production sequence, constraints based on the asymmetric traveling salesman problem (ATSP)
are added to the lot sizing formulation.

The objective of this work is to propose mathematical models for the Integrated Lot Sizing
and Scheduling Problem (ILSP) in a general context. In Section 2 a brief description of the
production process used as a base for the mathematical models is presented. The mathematical
models are presented in Section 3. Section 4 presents an illustrative example and final remarks.

2 Description of a production planning process

We will consider a production process in which a set of items are to be produced over a finite
planning horizon divided into several discrete periods. Items demands are known in advance
and are given for each period. Machine capacities should be taken into account in every period.
Moreover, machine changeover costs and times should be taken into account since the setup
cost and time is sequence dependent. To prevent infeasilbilities due to machine capacity we will
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allow backorders in each period. The lot scheduling problem considered is then to define which
items and the respective lot sizes should be produced in each period. If more them one item
is produced in the same period, the production sequence should be also defined. The decisons
should be taken considering a minimization of overall production costs computed in terms of
inventory, backorder and change over costs.

3 Three representations for the ILSP

In this section we describe three mathematical models to represent the one stage (1S), one
machine (1M) ILSP described in Section 2. The first model is based on the small bucket approach
and the other two are based on the big bucket approach.

3.1 Small Bucket Model - The GLS1S1M Model

The GLS1S1M is a lot scheduling model for the one stage, one machine lot scheduling problem
described in Section 2 based on the GLSP model in [5]. It contains the usual balance and capacity
constraints used to model a capacitated lot sizing problem. To obtain the production sequence,
each period of the planning horizon (called macro-period) is divided into a number of micro-
periods representing the maximum number of setups in each period. The micro-period size is
flexible and depends on the item lot size. It is a small bucket approach in the sense that only
one item can be produced in each micro-period. Let the following parameters define the problem
size:

• J is the number of items;

• T is the number of periods in the planning horizon;

• Nt as the number of micro-periods in period t.

Let (i, j, t) be the index set defined as: i, j ∈ {1, . . . , J}; t ∈ {1, . . . , T} and τ ∈ Nt be used to
index each micro-period. The data and variables used to represent the problem are described in
Table 1.

Data Name Meaning
pj machine capacity needed for production one lot of item j;
bij machine capacity needed to changeover from item i to j;
djt demand for item j in period t;
gj backorder cost for item j;
hj inventory cost for item j;
I+j0 initial inventory for item j;
I−j0 initial backorder for item j;
ct machine capacity in period t;
sij machine changeover cost from item i to j;
Nt maximum number of setups (micro periods) in period t;

Variable Name Meaning
I+jt inventory for item j at the end of period t;
I−jt backorders for item j at the end of period t;

xjtτ production quantity of item j in micro period τ ;
zijtτ =1 if there is a machine changeover from item i to item j in micro period τ .
yjtτ =1 if the machine is setup for item j in micro period τ ;

Table 1: Data and variables for the GLS1S1M Model

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 2, N. 1, 2014.

DOI: 10.5540/03.2014.002.01.0117 010117-2 © 2014 SBMAC

http://dx.doi.org/10.5540/03.2014.002.01.0117


The optimization criterion (1) is to minimize the overall costs taking into account inventory,
backorder and machine changeover costs.

Min Z =
∑

j∈J

∑

t∈T

(hjI
+
jt + gjI

−
jt) +

∑

t∈T

∑

τ∈Nt

∑

i∈J

∑

j∈J

j 6=i

sijzijtτ (1)

The lotsizing constraints are defined by constraints (2)-(7). Constraints (2) represent the bal-
ance among demand, production, inventories and backordersfor each item in each time period.
Constraints (3) represent the machine capacity in each time period. Constraints (4) guarantee
that there is production of item j in micro-period τ only if the machine is prepared. Constraints
(7) controls that, in each micro-period τ there is at most one changeover.

I+
j(t−1) + I−jt +

∑

τ∈Nt

xjtτ − I+jt − I−
j(t−1) = djt, ∀j,∀t (2)

∑

τ∈Nt

∑

j∈J

pjxjtτ +
∑

τ∈Nt

∑

i∈J

∑

j∈J

j 6=i

bijzijtτ ≤ ct, ∀t (3)

xjtτ ≤
ct
pj

yjtτ , ∀j, ∀τ ∈ Nt, ∀t (4)

∑

j∈J

yjtτ = 1, ∀τ ∈ Nt, ∀t (5)

zijtτ ≥ yit(τ−1) + yjtτ − 1, ∀τ ∈ Nt, ∀t, ∀j, i; i 6= j (6)
∑

i∈J

∑

j∈J

j 6=i

zijtτ ≤ 1, ∀τ ∈ Nt, ∀t (7)

3.2 Big Bucket Models: MTZ1S1M and MMC1S1M

The second strategy is a big bucket one and allows the production of several items in a given
period. The decisions associated with lot sizing are based on the Capacitated Lot Sizing Problem
(CLSP) (e.g. [5]). To obtain the production sequence in each period the assignment constraints
and the subtour elimination constraints proposed for the ATSP are used to guarantee that each
item produced in a period is sequenced and to eliminate subsequences respectively. There are
several different formulations for the ATSP proposed in the literature. Theses formulations differ
mainly on the strategy used to represent the subtour elimination constraints [7]. The date and
variables used to define the models are described in Tables 1 and 2.

Data Name Meaning
St maximum number of tank setups in perÃŋod t;

Variable Name Meaning
I+jt inventory for item j at the end of period t;
I−jt backorders for item j at the end of period t;
xjt production quantity of item j in period t;
zijt changeover on machine from item i to item j in period t.
ujt auxiliary variable - might be used to indicate the production order of item

j in period t;

Table 2: Data and variables for the MTZ1S1M and MC1S1M Models.

The optimization criterion (8) is to minimize the overall costs taking into account inventory,
backorder and machine changeover costs.

Min Z =
∑

j∈J

∑

t∈T

(hjI
+
jt + gjI

−
jt) +

∑

t∈T

∑

i∈J

∑

j∈J

j 6=i

sijzijt (8)
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The lotsizing constraints are defined by constraints (9)-(11). Constraints (9) and (10) are similar
to constraints (??) and (??) from model GLS1S1M. Constraints (11) guarantee that there is
production of item j only if the machine is prepared. Note that the setup variable is considered
implicitly in terms of the changeover variables and that production may not occur although the
machine might be prepared.

I+
j(t−1) + I−jt + xjt − I+jt − I−

j(t−1) = djt, ∀j,∀t (9)
∑

j∈J

pjxjt +
∑

i∈J

∑

j∈J

j 6=i

bijzijt ≤ Ct, ∀t (10)

xjt ≤
Ct

pjt









J
∑

i=i0
i 6=j

zijt









, ∀j,∀t (11)

Constraints (12)-(15) model the sequence in which the items will be produced in a given period
t. They are based on the ATSP formulations. Constraints (12) consider that in each period the
machine is initially setup for a ghost item i0. The changeover costs associated with the ghost
item are zero and do not interfere in the total solution cost. Constraints (13) ensure that if there
is a changeover from an item i to any item k then there is a changeover from that item k to
an item j. Constraints (14) guarantee that each item j is produced at maximum once in each
period t.

Constraints (12) and (13) alone might generate disconnected subsequences, and thus do not
guarantee a proper sequence of the items. The subsequences elimination constraints (15) avoid
this situation. Finally constraints (16) define the variables’ domain.

∑

j∈J

zi0jt ≥

J
∑

i=i0

zikt, ∀k ∈ J ; k 6= i, ∀t (12)

J
∑

i=i0
i 6=k

zikt =

J
∑

j=i0
j 6=k

zkjt, ∀k ∈ J, ∀t (13)

J
∑

j=i0
j 6=i

zijt ≤ 1, ∀i = i0, 1, . . . , J, ∀t (14)

Subsequence elimination constraints (15)

xjt ≥ 0, zijt = 0/1, ∀i, j;∀t. (16)

The MTZ1S1M Model

The first bigbucket model for the one stage one machine ILSP is based on the subtour
elimination constraints given by Miller Miller, Tucker and Zemlin (1960) who introduced such
constraints for a vehicle routing problem where each route was constrained to have no more than
a certain number of clients. A new set of auxiliary variables:

• ujt

are necessary to model constraints (15) based on the Miller, Tucker and Zemlin proposal:

ujt ≥ uit + 1− (J)(1 − zijt); ∀i,∀j; i 6= j;∀t (17)

(18)

The MTZ1S1M is then defined by the objective function (8), the lotsizing constraints (9) - (16),
the assignment constraints (9) - (16), the subsequence elimination constraint (17) and the domain
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constraints (19).

xjt ≥ 0, ujt ≥ 0, zijt = 0/1 ∀i, j;∀t. (19)

The MMC1S1M Model

The MTZ constraints used to eliminate subsequences, (17), in the model MTZ1S1M are of
polynomial order, thus allowing their inclusion a priori. However, a formulation based on this
constraints provides a weak linear relaxation dual bound. To streghen the formulation the multi-
commodity-flow formulation for the ATSP is used to replace constraints (15). To obtain the
second model based on the bigbucket strategy (Model MMC1S1M) we need to define:

• index r ∈ {1, . . . , J};

• mrijt.

The idea behind this formulation is that there are J commodities available at node i0 and a
demand of one unit of commodity j at node j. If mrijt = 1 then the flow of commodity r flows
from node i0 no node r through arc (i, j). In terms of the items sequence in period t, it means
that if product r is included in the production sequence, then product j follows product i in such
sequence.

The constraints (20)-(23) eliminates disconnected subsequence of items. Since only the items
which are produced (i.e. xrt > 0)should be sequenced, constraints (20) and (21) take place
only when the machine is prepared for item r. These constraints guarantee that if product r is
included in the sequence at least one other item should be also included.

∑

j∈J

mri0jt −
∑

j∈J

mrji0t =

J
∑

j=i0
j 6=r

zjrt, ∀r,∀t (20)

J
∑

j=i0
j 6=r

mrjrt −
J
∑

j=i0
j 6=r

mrrjt =
J
∑

j=i0
j 6=r

zjrt, ∀r,∀t (21)

Constraints (22) are the flow conservation constraints, for all but product r in node r. And
constraints (23) states that item j should follow item i in the sequence that includes item r only
if there is a changeover from product i to product j.

J
∑

i=i0
i 6=j

mrijt =
J
∑

i=i0
i 6=j

mrjit, ∀r,∀j; j 6= r,∀t (22)

mrijt ≤ zij ∀i, j = i0, 1, . . . , J ; ∀r;∀t (23)

The multi-commodity-flow model for the single stage single machine lot scheduling problem
(MM1S1M) is defined by the objective function (8), the constraints (9)-(14), the subtour elimi-
nation constraints (20)-(23), and the domain constraints (24).

xjt ≥ 0, mrijt ≥ 0, zijt = 0/1 ∀i, j, r;∀t. (24)

4 An ilustrative example

A computational experiment using an ilustrative example adapted from [1], was conducted
to compare the GLS1S1M, the MTZ1S1M and the MMC1S1M models. The example considers
three products and three periods The models were implemented using the AMPL modelling
language [2] and solved by the CPLEX 12.1 [6].
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This instance of the GLS1S1M model have 208 variables and 132 constraints, the MTZ1S1M
instance have 90 variables and 96 constraints, and the MMC1S1M instance have 225 variables
and 204 constraints. The objective value is 787. The two bigbucket models had a similar
computational behavior. Both were solve in the root node of the Cplex Branch and Cut tree
after the inclusion of 17 cutting planes. To solve the instance of the GLS1S1M model it was
necessary to examine 450 nodes in the branch and bound tree and 19 cutting planes. The
time necessary to solve the linear relaxations of the GLS1S1M and MMC1S1M was similar, it
was higher than the time necessary to solve the linear relaxation of the MTZ1S1M instance. A
computational study is being prepared to evaluate what is the influence of the formulations when
large scale instances of the 1S1MILSP are solved by genral purpose software.
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