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Michele C. Valentino 2

DAMAT- UTFPR, Campus Cornélio Procópio.
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Abstract. In this paper, a less conservative sufficient condition that ensure the ultimate
boundedness of the solutions of switched TS fuzzy systems is proposed. The main result is
given in terms of linear matrix inequalities (LMIs), which were formulated by calculating
the derivative of the auxiliary function V along the solution of the system formed by a
convex combination of the switching subsystems. The LMI conditions were relaxed using
the S-procedure. A numerical example illustrates the efficiency of the proposed result.
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1 Introduction

Switched system has been used to model many applications in several areas [3,6,7,10].
Due to the large number of applications, the theory for this class of system has attracted
the attention of many researchers. In consequence, many approaches for stability analysis
and controller synthesis were developed [1, 8, 9, 12]. However, the results presented in
these papers depend on the existence of a Lyapunov function or a Lyapunov-like function,
which it is not an easy task. In order to overcome this problem, in [11] sufficient LMI
conditions for the ultimate boundedness of the solutions of switched TS fuzzy systems were
presented. The main feature of the result is that the derivative of the function can assume
positive values in bounded sets. In this paper, we provide less conservative conditions than
presented in [11], by exploring the S-procedure. The S-procedure is a mathematical result
which provides information about a specific quadratic inequality by analyzing another
quadratic inequality. More details on this topic can be found in [2, 4, 5, 7]. Henceforth,
Ω̄ denotes the closure of set Ω, the notation P � 0 (P � 0) indicates that P is a real
symmetric and positive definite (semi-definite) matrix and the notation P ≺ 0 (P � 0)
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indicates that P is a symmetric and negative definite (semi-definite) matrix, the symbol
“?” within a matrix represents the symmetric terms of the matrix and ei denotes a vector
with one at entry i and zeros elsewhere, that is, ei = [0 · · · 0 1︸︷︷︸

i−th

0 · · · 0]′ ∈ Rn where ′

denotes the transposed vector, ∂Z denotes the boundary of set Z, and finally, inf and sup
denote the infimum and supremum of a subset, respectively.

2 Preliminaries

Let us consider the following switched TS fuzzy system

ẋ(t) =
r∑

k=1

hσ(x(t))k(x(t))Aσ(x(t))kx(t) (1)

where x(t) ∈ IRn is the state, σ(x(t)) : IRn → P is a piecewise constant function of the
state called switching signal, with P = {1, 2, · · · , N} and N the number of subsystems;
Aσ(x(t))k ∈ IRn×n are the matrices of the local models and r is the number of local models
of each subsystem σ(x(t)). It is assumed that the state of (1) does not jump at the
switching instants, that is, the solution x(t) is everywhere continuous. In this work, the
dynamics behavior of (1) is investigated in the following subset of the state space:

Z := {x(t) ∈ IRn : |xj(t)| ≤ x̄j}, j ∈ I (2)

where I ⊂ {1, 2, · · · , n} and x̄j is a known positive real number for all j ∈ I. When
convenient, the argument of function hpk(x(t)) will be omitted and p will be used to
represent the case σ(x(t)) = p.

From properties of membership functions the following relations hold:

∀p ∈ P, k ∈ R, hpk ≥ 0,
r∑

k=1

hpk = 1 and
r∑

k=1

ḣpk = 0 (3)

with R = {1, 2, · · · , r}.
Exploring (3), we can obtain∑

k∈R
hβk −

1

N − 1

∑
p∈P
p 6=β

∑
k∈R

hpk


∑
p∈P

∑
k∈Gp

hpk

 = 0 (4)

with β ∈ P and Gp a subset of R for all p ∈ P, which is previously chosen.

To establish the main results of this paper, consider the set

P =

α ∈ IRN : αp ≥ 0, ∀p ∈ P and

N∑
p=1

αp = 1

 (5)
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and define

Zv =
{
x ∈ Z : e′vx = x̄v

}⋃{
x ∈ Z : e′vx = −x̄v

}
, ∀v ∈ {1, 2, · · · , n},

Ω` = {x ∈ Z : V (x) < `},
Ωa,` = Ωa − Ω`, ` < a,

D =

x ∈ Z : x′

∑
p∈P

∑
k∈Gp

ḣpk(x)Ppk

x > 0

 .

Proposition 2.1. If there exists α ∈P such that system

ẋ(t) =
N∑
p=1

αp

r∑
k=1

hpkApkx(t) (6)

is asymptotically stable, then there exists a switching law that ensures the asymptotic
stability of the switched TS fuzzy system (1).

Proof. The proof follows [11].

In the next section, the S-procedure is explored to obtain less conservative conditions
than presented in [11].

3 Main Result

Consider a scalar function V : Z → R given by:

V (x) = x′P(h)x (7)

where P(h) =
∑
p∈P

∑
k∈Gp

hpkPpk. Using (7) the following result is obtained.

Theorem 3.1. Consider system (1) in set Z and parameters a < min
x∈∂Z

∑
p∈P

∑
k∈Gp

hpk, b1 ≥

max
x∈∂Z

∑
p∈P

∑
k∈Gp

hpk and b ≥ ||x||, ∀x ∈ Z. If for given real numbers ε > 0 and α ∈ M , there

exists a real number ` < a such that sup
x∈D

V (x) < ` and matrices Ppk = P′pk ∈ Rn×n,

M ∈ R2n×2n, Lpk ∈ Rn×n, Rpk ∈ Rn×n satisfying (8)-(17), then, every solution ϕσ(t, x0)
of (1), with x0 ∈ Ωa, possessing a mixed switching law σ(t, x) which attracts x(t) to Ω̄`

while x(t) ∈ Ωa,`.

Υβk βk + Q ≺ 0, k ∈ Gβ (8)

Υβk ij + Q ≺ 0, k ∈ R− Gβ, i ∈ P, j ∈ Gi (9)

Υβk βj + Υβj βk + 2Q ≺ 0, j, k ∈ Gβ, j < k (10)

Υpk pk −
1

N − 1
Q ≺ 0, p ∈ P − {β}, k ∈ Gp (11)
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Υpk ij −
1

N − 1
Q ≺ 0, p ∈ P − {β}, k ∈ R− Gp, i ∈ P, j ∈ Gi (12)

Υpk pj + Υpj pk −
2

N − 1
Q ≺ 0, p ∈ P − {β}, k, j ∈ Gp, j < k (13)

Υpk ij + Υij pk −
2

N − 1
Q ≺ 0, p, i ∈ P − {β}, p < i, k ∈ Gp, j ∈ Gi (14)

Υβk ij + Υij βk +
N − 2

N − 1
Q ≺ 0, k ∈ Gβ, i ∈ P − {β}, j ∈ Gi (15)

1

x̄2v
eve
′
v < Ppk,∀v ∈ {1, 2, ..., n}, p ∈ P, k ∈ Gp (16)

Ppk ≤ µI, ∀p ∈ P, k ∈ Gp, (17)

with

Q =
∑
p∈P

∑
k∈(R−Gp)

Υpk pk + M and

Υpk ij =

[
αi(LpkAij + A′ijL

′
pk) + εPpk/N − ε `I

Nb1b2
?

Ppk/N − L′pk/N + αiRpkAij (−Rpk −R′pk)/N

]
.

Proof. From [11], we have that the level set Ωa is contained in Z and ∂Ωa∩∂Z = ∅. Now,
multiplying (8) by h2βk, (9) by hβkhij , (10) by hβkhβj , (11) by h2pk, (12) and (14) by hpkhij ,

(13) by hpkhpj , (15) by hβkhij and adding all terms we obtain:∑
k∈(R−Gβ)

∑
i∈P

∑
j∈Gi

hβkhij (Υβk ij + Q) +
∑
k∈Gβ

∑
j∈Gβ
j<k

hβkhβj(Υβk βj + Υβj βk + 2Q)

+
∑
p∈P
p 6=β

∑
k∈Gp

h2pk

(
Υpk pk −

1

N − 1
Q

)
+
∑
p∈P
p 6=β

∑
k∈(R−Gp)

∑
i∈P

∑
j∈Gi

hpkhij

(
Υpk ij −

1

N − 1
Q

)

+
∑
k∈Gβ

h2βk (Υβk βk + Q) +
∑
p∈P
p 6=β

∑
k∈Gp

∑
i∈P
i 6=β
i>p

∑
j∈Gi

hpkhij

(
Υpk ij + Υij pk −

2

N − 1
Q

)

+
∑
p∈P
p 6=β

∑
k∈Gp

∑
j∈Gp
j<k

hpkhpj

(
Υpk pj + Υpj pk −

2

N − 1
Q

)

+
∑
k∈Gβ

∑
i∈P
i 6=β

∑
j∈Gi

hβkhij

(
Υβk ij + Υij βk +

N − 2

N − 1
Q

)

=
∑
p∈P

∑
k∈Gp

∑
i∈P

∑
j∈R

hpkhijΥpk ij

+

∑
k∈R

hβk −
1

N − 1

∑
p∈P
p 6=β

∑
k∈R

hpk


∑
p∈P

∑
k∈Gp

hpk

Q ≺ 0. (18)
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Replacing (4) in (18) we have that L(h)A(α, h) + A(α, h)′L(h)′ + εP (h)− ε `I
b1b2

∑
p∈P

∑
kGp

hpk ?

P(h)− L(h)′ + R(h)A(α, h) −R(h)−R(h)′

 ≺ 0 (19)

where L(h) =
∑
p∈P

∑
k∈Gp

hpkLpk, R(h) =
∑
p∈P

∑
k∈Gp

hpkRpk and A(α, h) =
∑
p∈P

∑
k∈R

αphpkApk.

Pre-multiplying and post-multiplying (19) by the vector [x′ x′A(α, h)′] and its transpose,
respectively, it yields

x′

A(α, h)′P(h) + P(h)A(α, h) + εP(h)− ε `I
b1b2

∑
p∈P

∑
kGp

hpk

x ≺ 0, (20)

that is,

x′
{
A(α, h)′P(h) + P(h)A(α, h)

}
x < −εV (x) + ε

`||x||2

b1b2

∑
p∈P

∑
kGp

hpk

≤ −ε(V (x)− `) < 0, (21)

for all x such that V (x) > `.
The time-derivative of the function (7) along the trajectories of (1) is given by:

V̇ (x) = x′

∑
p∈P

∑
k∈Gp

ḣpkPpk

x+ x′ {A(α, h)P(h) + P(h)A(α, h)}x. (22)

By (21), we can say that the second part of (22) is negative definite whenever x /∈ Ω`. Since
sup
x∈D

V (x) < ` < a, we can conclude by Lemma 1 from [11] that every solution ϕσ(t, x0)

of (1) with x0 ∈ Ωa possessing a measurable mixed switching law σ(t, x) is attracted

to Ω̄` while x(t) ∈ Ωa,`. Moreover, if (16) and (17) holds, then x′
∑
p∈P

∑
k∈Gp

hpkPpkx ≤∑
p∈P

∑
k∈Gp

hpkx
′µx. Therefore, minimizing µ the set {x ∈ Z : x′x ≤ a

b1µ
} ⊆ Ωa, makes Ωa to

be maximized.

Remark 3.1. From [11], a measurable mixed switching law σ(t, x) satisfying Theorem 3.1
can obtained with

σ(x) =


1, if x ∈ Γ1

p, if x ∈ (Γp \ (
⋃
k<p

Γk)) (23)

where Γp = {x ∈ B : ∇V (x)fp(x) < 0 and ∇V (x)fp(x) ≤ ∇V (x)fk(x), ∀k ∈ P − {p}}.

In the next example presents a comparison between the feasibility region obtained with
Theorem 1 from [11] and Theorem 3.1.
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Example

Consider a switched TS fuzzy system (1) with the following local models:

A11 =

[
1 0
0 1

]
, A12 =

[
−5 0

0 1

]
; A21 =

[
−10 a1

0 a2

]
, A22 =

[
−10 −15

0 −3

]
, (24)

and membership functions

h11 =
50− x21 − x22

50
, h12 = 1− h11; h21 =

x22
25
, h22 = 1− h21 (25)

in the set Z = {x ∈ R2 : |x1| ≤ 5 and |x2| ≤ 5}. Adopting parameters b = 2
√

5, b1 =
1.5, α1 = 0.6, α2 = 0.4, β = 1, µ = 0.19, ε = 0.7 and ` = 0.2. Figure 1 shows the feasible
region in the plane a1×a2 obtained with [11] and Theorem 3.1. Note that the conservatism
is reduced significantly by Theorem 3.1.

20 25 30 35

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

Figure 1: Comparison of the region of the plane a1×a2 between [11] (�) and Theorem 3.1
(×).

4 Conclusions

In this work, LMI-Based conditions to ensure the ultimate boundedness of the solutions
of switched TS fuzzy systems were proposed. The result provided sufficient conditions to
the existence of an auxiliary function V (x), such that, its time derivative can be positive
in some bounded sets. Finally, the S-procedure was used to obtain less conservative
conditions than recent published results. A numerical example illustrates the efficacy of
the proposed method.
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