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Abstract. In this work we propose a p-fuzzy system to describe the dynamic of a con-
secutive chemical reaction model, which is given by a system of differential equations. We
use Mamdani’s method as a fuzzy controller based on a fuzzy rule-based system, whose
fuzzy rules represent the direction field of the differential equations. Computational sim-
ulations reveal that the numerical solution via p-fuzzy system is similar to those of the
classical chemical reactions. Finally, we discuss the capability of the p-fuzzy approach as
approximator.
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1 Introduction

Chemical reactions are basically given by transformations involving one or more sub-
stances (reagents) resulting in new substances (products) with different properties of the
previous ones [2]. Chemical kinetic deals with chemistry experiments and interprets them
in terms of mathematical models. In particular, chemical kinetics studies the chemical
reactions, as well as the factors that influence the final result [4]. Some of these factors
may be given by concentration, temperature, pressure etc.

The velocity of a reaction can be calculated from the concentrations of the reagents
and its orders of reactions, which are determined experimentally. Hence there may be
imprecision/uncertainty in obtaining this velocity. The classic models do not consider this
fact [5]. In order to describe these uncertainties the fuzzy sets theory can be used [1].

In this paper we focus on consecutive chemical reactions models. Consecutive reactions
are reactions in which products are formed as intermediates, which then react further. This
type of chemical reaction is described by [2]

A
k1−→ B

k2−→ C, with reaction rates k1 and k2. (1)
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An example of this reaction is the consecutive beta decay of an isotope of Uranium-238

into Neptunium-239 and after that into Plutonium-239, that is, 238
92U

β−
−→ 239

93Np
β−
−→ 239

94Pu.

In order to describe the dynamic of the reaction (1) (as well as the concentration of
the reagents), we design a fuzzy rule-based system. From these fuzzy rules, we determine
the dynamic of this model via p-fuzzy system.

This work investigates the application of fuzzy set theory and it describes a simple
methodology to study a chemical reagent model which can be used for any expert. We
provide simulations in order to illustrate the methodology and we compare it with the
analytical solution.

2 Mathematical Background

A fuzzy subset of A of a universal set X is characterized by a function ϕA : X → [0, 1]
called membership function of A such that ϕA(x) represents the membership degree of x
in X [1]. For notation convenience, we denote ϕA(x) by the symbol A(x). Here we focus
in a special class of fuzzy sets called fuzzy numbers.

In particular a trapezoidal fuzzy number A, denoted by a quadruple (a;m;n; b), with
a,m, n, b ∈ R and a ≤ m ≤ n ≤ b, is defined by the following membership function

A(x) =


x−a
m−a , if x ∈ [a,m),

1 , if x ∈ [m,n],
b−x
b−n , if x ∈ (n, b],

0 , otherwise

.

In case where m = n, we speak of triangular fuzzy number and it is denoted by the
triple (a;m; b) instead of (a;m;m; b) [1].

Fuzzy Rule-Based Systems (FRBS) are organized in four components: a fuzzification
module, a fuzzy rule-base, a fuzzy inference method, and a defuzzification module [6,7,10].

In the fuzzification module, real-valued inputs are translated into fuzzy sets of their
respective universes. In the general case, expert knowledge plays an important role to
build the membership functions for each fuzzy set associated with the inputs [6].

We consider a fuzzy rule-base given by a collection of fuzzy conditional rules of the form
“if x1 is Ai1 and x2 is Ai2 then y is Bi”, for i = 1, . . . , r, where Aij and Bi, i = 1, . . . , r
and j = 1, 2, are fuzzy sets that represent linguistic terms. These linguistic terms Aij and
Bi are called by antecedents and consequent of each fuzzy rule, respectively [9].

In this work we use the Mamdani method as canonical inclusion fuzzifier. For a given
input (x1, x2), the Mamdani method produces the following output B:

B(y) = max
i=1,...,r

min{Ai1(x1) , Ai2(x2) , Bi(y) }, ∀y ∈ R . (2)

The defuzzification module consists of representing a fuzzy set by a real value [6].

A partially fuzzy system or, for short, a p-fuzzy system, is a dynamical system where
the direction field is given by FRBS based on a partially a priori known of the direc-
tion field. Furthermore, the state variables and their variations are considered linguistic.
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Thus, the state variables are correlated to their variations by means of fuzzy rules where
the state variables are the input and the variations are outputs. Since in such method-
ologies, processes of defuzzification are expected, the final solution of a p-fuzzy system is
deterministic [8, 9].

In this work we use p-fuzzy systems to deal with autonomous initial value problems
(IVPs) of the form 

dx1
dt

= f1(x1, x2, x3) , x1(0) = (x1)0 ,

dx2
dt

= f2(x1, x2, x3) , x2(0) = (x2)0 ,

dx3
dt

= f3(x1, x2, x3) , x3(0) = (x3)0 .

(3)

where the functions f1, f2 and f3 are partially known.
In order to obtain the solution of the IVP (3) via p-fuzzy system or at least an approx-

imation of it, without knowing the field f1, f2 and f3 explicitly, we take into account the
qualitative information available to design a fuzzy rule-base which represents the proper-
ties that characterize the phenomenon [3].

The analytical solution (x1(t), x2(t), x3(t)) of (3) can be estimated by a sequence
(X1(n), X2(n), X3(n)) of a p-fuzzy system obtained by means of numerical methods for
the ordinary differential equations (ODE) such as Euler’s method, which is computed by

Xi(n + 1) = Xi(n) + hFi(n) (4)

for i = 1, 2, 3, where h is the step (in time) and Fi(n) = Fi(X1(n), X2(n), X3(n)) are
variations rates obtained by FRBSs. Thus we can rewrite (3) as follows:

dX1

dt
= FRBSF1 , X1(0) = (x1)0 ,

dX2

dt
= FRBSF2 , X2(0) = (x2)0 ,

dX3

dt
= FRBSF3 , X3(0) = (x3)0 .

(5)

In general a Mamdani fuzzy controller yields a function Fi = f∗
r (for any i = 1, 2, 3)

where r denotes the number of rules in the fuzzy rule base. Hence it seems reasonable to
assume that the adjusted function f∗

r approximates f = fi when the number of data r
increases [3].

3 Methodology

From the effective rate laws, the reaction (1) can be given by the following IVP [2]

d[A]

dt
= −k1[A], [A(0)] = [A0]

d[B]

dt
= k1[A]− k2[B], [B(0)] = [B0]

d[C]

dt
= k2[B], [C(0)] = [C0]

, (6)
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where [X] represents the concentration of the reagent X. The analytical solution for the
system (6) is given by [2]

[A(t)] = [A0]e
−k1t ,

[
B(t)

]
= [B0]e

−k2t + k1[A0]
e−k1t − e−k2t

k2 − k1
and

[
C(t)

]
= [C0] + [B0](1− e−k2t) + [A0]

(
1 +

k1e
−k2t − k2e

−k1t

k2 − k1

)
.

Recall that in a p-fuzzy system the vector fields are given by FRBSs (see Section
2). Here, we employ a p-fuzzy system in the form of (5) in order to estimate a solution
for (6). We use the corresponding X1, X2 and X3 variables to represent the [A], [B]
and [C] chemical concentrations, respectively. The antecedents and consequents of the
corresponding fuzzy rules are given by linguistic terms associated respectively with the
input and output variables.

The both inputs variables can be classified by 4 linguistic terms expressed as “low” (A1

and B1), “average low” (A2 and B2), “average high” (A3 and B3) and “high” (A4 and B4).
Moreover, for the output variables (the variations rates) we consider the terms expressed
as “high negative” (N3), “average negative” (N2), “low negative” (N1), “low positive”
(P1), “average positive” (P2), and “high positive” (P3). Figures 1 and 2 illustrate the form
and order in which the antecedents and consequents membership functions are adjusted,
respectively.
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Figure 1: Antecedents (fuzzy numbers as linguistic terms) of inputs variables (X1 and X2)
for the consecutive chemical reactions model.

We elaborate a FRBS based on the differential equations for the consecutive chemical
reactions model given by (6).

Figure 3 depicts the fuzzy rule-base where the arrows represent the direction and mag-
nitude of the variation rates, that is, the arrow on the right/up (left/down) side indicates
positive (negative) variations and the length of the arrow indicates the magnitude of these
variations. For this work, one rule-base is established from the graphical interpretation of
Figure 3 and we use the notation Ẋi = dXi

dt , with i = 1, 2, 3, to represent the variational
rates in the fuzzy rules. We construct a rule-base of 20 fuzzy rules of the type:

r1: If X1 is A0 and X2 is B1 then Ẋ1 is P1 and Ẋ2 is N1 and Ẋ3 is N1.

r2: If X1 is A1 and X2 is B1 then Ẋ1 is N1 and Ẋ2 is P2 and Ẋ3 is N1.
...

...
...
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Figure 2: Consequents (fuzzy numbers as linguistic terms) of outputs variables (dX1
dt , dX2

dt

and dX3
dt ) for the consecutive chemical reactions model.

Figure 3: Graphic representation of the fuzzy rules as direction vectors for the consecutive
chemical reactions model.

r7: If X1 is A1 and X2 is B2 then Ẋ1 is N1 and Ẋ2 is P1 and Ẋ3 is P1.

r8: If X1 is A2 and X2 is B2 then Ẋ1 is N2 and Ẋ2 is P2 and Ẋ3 is P1.

...
...

...
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r13: If X1 is A2 and X2 is B3 then Ẋ1 is N2 and Ẋ2 is P2 and Ẋ3 is P1.

r14: If X1 is A3 and X2 is B3 then Ẋ1 is N2 and Ẋ2 is P2 and Ẋ3 is P1.
...

...
...

r19: If X1 is A3 and X2 is B4 then Ẋ1 is N2 and Ẋ2 is P1 and Ẋ3 is P2.

r20: If X1 is A4 and X2 is B4 then Ẋ1 is N3 and Ẋ2 is P2 and Ẋ3 is P2.

Once the rule base is established, we use the Mamdani (in the inference module) and
the centroid (in the defuzzification module) methods. Figure 4 illustrates the scheme of
the FRBS used in this work.

Figure 4: Fuzzy rule-based system for the consecutive chemical reactions model

3.1 Results

We use the proposed p-fuzzy system to simulate the dynamic behavior of the consecu-
tive chemical reactions for three concentrations [A], [B] and [C]. We compare the obtained
p-fuzzy solution (for X1, X2 and X3) with the analytical solution given by Equation (7).

Figure 5 presents the three p-fuzzy and analytical solutions of system (6) with initial
conditions given by [A0] = 1, [B0] = 0 and [C0] = 0. We can observe that the solutions
are qualitative and quantitative similar with the classical solution.
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Figure 5: p-fuzzy and analytical solutions of IVP (6) with [A0] = 1, [B0] = 0 and [C0] = 0.
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4 Final Remarks

We present a p-fuzzy methodology, based on Fuzzy Rule-Based Systems (FRBS), to
produce solutions for consecutive chemical reactions models. The solutions obtained by
this approach are (quantitative and qualitative) similar to the ones via differential equa-
tions theory (see Figure 5).

Note that the proposed methodology can be used by any chemical researcher and does
not require previous experience with differential equations. Finally, it should be noted
that the use of the p-fuzzy system is based on universal approximation capability, which
means that it is a good estimator of theoretical problems.
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