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Abstract. In this work, classical results from duality theory are obtained for continuous-
time linear optimization problems with inequality constraints. Weak and strong duality
properties, as well as, the complementary slackness theorem are established.
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1 Introduction

This work is concerned with the continuous-time linear optimization problem posed as
follows:

minimize F (z) =

∫ T

0
c(t)>z(t)dt

subject to A(t)z(t) ≤ b(t) a.e. in [0, T ],
z ∈ L∞([0, T ];Rn),

(CLP)

where A : [0, T ] → Rm×n, b : [0, T ] → Rm and c : [0, T ] → Rn have essentially bounded
and measurable entries in [0, T ].

This class of problems was introduced in 1953 by Bellman [2] and since then the
theory was considerably developed. Optimality conditions, as well as, duality results were
obtained. At first, the matrix A and vectors b and c were not allowed to vary with t and
the optimality conditions and duality results were proved to be valid under very strong
assumptions. More general problems were then tackled and less restrictive assumptions on
the problem data were made. In 1980, the article [5] was published by Reiland generalizing
previous results encountered in the literature until then. After the paper by Reiland,
Zalmai published a series of articles on continuous-time nonlinear programming involving
necessary and sufficient optimality conditions and duality theory. See [7], for example. The
assumptions made by Zalmai were less restrictive than those ones by Reiland. One of the
main tools used by Zalmai was a generalization of the Gordan Transposition Theorem for
the continuous-time context (see [6]). After the works by Zalmai, almost all the literature
produced in this area made use of the Gordan’s Theorem. However, later, this theorem
was discovered to be not valid (see [1]). Since then, the paper by Reiland became one of
the main references on continuous-time linear programming.

1valeriano.oliveira@unesp.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 7, n. 1, 2020.

Trabalho apresentado no XXXIX CNMAC, Uberlândia - MG, 2019.

DOI: 10.5540/03.2020.007.01.0374 010374-1 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0374


2

In [5], Reiland proved classical duality theorems for continuous-time linear program-
ming problems under some constraint qualifications. He also presented an example show-
ing that constraint qualifications are essential on establishing such results. So, in the
continuous-time context, the linearity of the problem data is not itself a constraint quali-
fication, as it is the case on finite dimensions.

Here, we obtain some classical results from duality theory for (CLP), namely, weak
and strong duality properties and the complementary slackness theorem. As pointed by
Reiland, in the continuous-time context, even for linear problems, a constraint qualification
was necessary. We propose a new constraint qualification which is less restrictive and
simpler to be verified in comparison with the one used by Reiland. In fact, Reiland in [5],
required (i) the validity of a Slater-type condition; (ii) that the kernel of a certain operator
(between infinite dimensional spaces) has finite dimensions and that its range is closed; and
(iii) that the closure (in L∞) of the feasible directions cone coincides with the linearized
feasible directions cone. The new constraint qualification proposed here stands only on a
property of the cone generated by the rows of matrix A(t). It is worth mentioning that our
constraint qualification may be verified even when matrix A(t) does not have full rank.

The work is organized in the following way. Next, some preliminaries are given. The
main results are stated and proved in Section 3. Conclusion words are provided in the last
section.

2 Preliminaries

Optimality conditions for (CLP) can be found, for example, in de Oliveira [3] and in
Monte and de Oliveira [4]. Particularly, in [4] we can find optimality conditions for a more
general case: problems with nonlinear equality and inequality constraints. However, the
constraint qualifications used in [3] and [4] are different. In what follows, we reproduce
the optimality conditions for (CLP) developed in [3].

The set of all feasible solutions of (CLP) will be denoted as Ω:

Ω = {z ∈ L∞([0, T ];Rn) : A(t)z(t) ≤ b(t) a.e. in [0, T ]}.

We say that z̄ ∈ Ω is an optimal solution of (CLP) if

F (z̄) ≤ F (z) ∀z ∈ Ω.

We will denote I = {1, 2, . . . ,m}.
Let β > 0 be a small scalar. Given z̄ ∈ Ω, we will denote by Iβ(t) the index set of the

β-active constraints at instant t, that is,

Iβ(t) = {i ∈ I : −β ≤ ai(t)>z̄(t)− bi(t) ≤ 0},

where ai(t)
> denotes the i-th row of matrix A(t).

We will denote by Ia(t) the index set of the active constraints at instant t, that is,

Ia(t) = {i ∈ I : ai(t)
>z̄(t)− bi(t) = 0}.
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Given an indices subset I ⊂ I and t ∈ [0, T ], we will denote by AI(t) the matrix
obtained from A(t) by removing the rows whose indices do not belong to I. The cardinality
of I will be denoted by |I|.

The smallest positive singular value of AI(t) will be denoted by σp(t)(A
I(t)), where

p(t) = rank(AI(t)).
The cone generated by the rows of AI(t) will be denoted by cone(AI(t)).

Definition 2.1. We say that the Regularity Condition (β-RC) is satisfied at z̄ ∈ Ω if for
almost all t ∈ [0, T ] there exist an indices subset I](t) ⊂ Ia(t) and a constant K̂ > 0 such
that

(i) cone(AI](t)(t)) = cone(AIβ(t)(t)) and rank(AI](t)(t)) = |I](t)| =: p(t);

(ii) min{σp(t)(AIa(t)(t)), σp(t)(AI](t)(t))} ≥ K̂;

for some β > 0.

A sufficient condition to the validity of (β-RC)-(i) is that, for almost all t, the matrix
AIβ(t)(t) has full rank. In this case it is enough to set I] = Iβ.

Theorem 2.1 (de Oliveira [3]). Let z̄ ∈ Ω be an optimal solution of (CLP). Assume that
(β-RC) is satisfied at z̄. Then, there exists u ∈ L∞([0, T ];Rm) such that

c(t) +A(t)>u(t) = 0 a.e. in [0, T ], (1)

u(t)>[A(t)z̄(t)− b(t)] = 0 a.e. in [0, T ], (2)

u(t) ≥ 0 a.e. in [0, T ]. (3)

Remark 2.1. Given the linearity of the problem, the converse of Theorem 2.1 holds true,
we mean, if there exists u ∈ L∞([0, T ];Rm) such that conditions (1)-(3) are valid, then
z̄ ∈ Ω is an optimal solution of (CLP).

3 Duality results

The main results will be stated and proved in this section. Below we give the definition
of the dual problem. Next, among others, weak and strong duality properties and the
complementary slackness theorem are presented.

Associated to (CLP), we define the following dual problem:

maximize G(z) =

∫ T

0
b(t)>w(t)dt

subject to A(t)>w(t) = c(t) a.e. in [0, T ],
w(t) ≤ 0 a.e. in [0, T ],
w ∈ L∞([0, T ];Rm).

(CDP)

From now on, (CLP) will be referred to as the primal problem.
The set of all feasible dual solutions will be denoted by Θ, i.e.,

Θ = {w ∈ L∞([0, T ];Rm) : A(t)>w(t) = c(t), w(t) ≤ 0 a.e. in [0, T ]}.

We begin with the weak duality property.
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Theorem 3.1 (Weak Duality). Let z ∈ Ω and w ∈ Θ be feasible solutions of (CLP) and
(CDP). Then, G(w) ≤ F (z).

Proof. Since z ∈ Ω and w ∈ Θ, we know that b(t) ≥ A(t)z(t) and w(t) ≤ 0 a.e. in [0, T ].
Therefore, b(t)>w(t) ≤ z(t)>A(t)>w(t) a.e. in [0, T ]. By making use of the fact that
A(t)>w(t) = c(t) a.e. in [0, T ], once w ∈ Θ, we have b(t)>w(t) ≤ z(t)>c(t) a.e. in [0, T ].
Thus,

G(w) =

∫ T

0
b(t)>w(t)dt ≤

∫ T

0
c(t)>z(t)dt = F (z).

Theorem 3.2. Assume that Ω 6= ∅. If there exists a sequence {zk} ⊂ Ω such that
F (zk)→ −∞ when k →∞, then Θ = ∅.

Proof. Suppose that there exists a sequence {zk} ⊂ Ω such that F (zk)→ −∞ but Θ 6= ∅.
Then there exists w ∈ Θ, and by Theorem 3.1, G(w) ≤ F (zk) for all k. This inequality
contradicts the fact that F (zk)→ −∞ when k →∞. Therefore, Θ = ∅.

Theorem 3.3. Assume that Θ 6= ∅. If there exists a sequence {wk} ⊂ Θ such that
G(wk)→ +∞ when k →∞, then Ω = ∅.

Proof. Suppose that exists a sequence {wk} ⊂ Θ such that G(wk) → +∞ while Ω 6= ∅.
Then there exists z ∈ Ω, and by Theorem 3.1, G(wk) ≤ F (z) for all k. This inequality
contradicts the fact that G(wk)→ +∞ when k →∞. Thus, Ω = ∅.

Lemma 3.1. Let z̄ ∈ Ω be an optimal solution of (CLP). Assume that (β-RC) is satisfied
at z̄.Then w̃ = −u, where u ∈ L∞([0, T ];Rn) is the Lagrange multiplier associated to z̄,
given in Theorem 2.1, is a feasible solution of (CDP), that is, w̃ ∈ Θ.

Proof. From (1), we have c(t) = −A(t)>u(t) a.e. in [0, T ], so that A(t)>w̃(t) = c(t) a.e.
in [0, T ]. From (3), it follows that w̃(t) = −u(t) ≤ 0 a.e. in [0, T ]. Therefore, w̃ ∈ Θ.

Theorem 3.4. Assume that Ω 6= ∅ and that (β-RC) is satisfied at each z ∈ Ω. If Θ = ∅,
then (CLP) does not have any optimal solution.

Proof. If (CLP) has an optimal solution, by Lemma 3.1, there exists w̃ ∈ Θ, contradicting
the hypothesis.

Theorem 3.5. Assume that Θ 6= ∅ and that there exists a constant KA > 0 such that
det(A(t)>A(t)) ≥ KA a.e. in [0, T ]. If Ω = ∅, then (CDP) does not have any optimal
solution.

Proof. Suppose that (CDP) has an optimal solution, say w̄ ∈ Θ. Let us note that the
existence of a constant KA > 0 such that det(A(t)>A(t)) ≥ KA a.e. in [0, T ] implies
that the full rank assumption in Monte and de Oliveira [4] is satisfied. It follows from
Theorem 4.1 in [4], that there exist u ∈ L∞([0, T ];Rn) and v ∈ L∞([0, T ];Rm) such that
b(t) + A(t)u(t) − v(t) = 0, v(t) ≥ 0 and v(t)>w̄(t) = 0 a.e. in [0, T ]. Taking z̃ = −u,
we have A(t)z̃(t) = b(t) − v(t) ≤ b(t) a.e. in [0, T ], that is, z̃ ∈ Ω, contradicting the
hypothesis.
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Theorem 3.6 (Strong Duality). Let z̄ ∈ Ω and w̄ ∈ Θ be feasible solutions of (CLP) and
(CDP). Assume that (β-RC) is satisfied at z̄. Then F (z̄) = G(w̄) if, and only if, z̄ is an
optimal solution of (CLP) and w̄ is an optimal solution of (CDP).

Proof. Suppose that F (z̄) = G(w̄). It follows from the weak duality property, Theorem
3.1, that F (z) ≥ G(w̄) = F (z̄) for all z ∈ Ω. Thus, z̄ is an optimal solution of (CLP). It
follows from the same property that G(w) ≤ F (z̄) = G(w̄) for all w ∈ Θ, so that w̄ is an
optimal solution of (CDP).

Reciprocally, suppose that z̄ is an optimal solution of (CLP) and w̄ is an optimal
solution of (CDP). We know from Lemma 3.1 that w̃ = −u ∈ Θ, where u is the Lagrange
multiplier associated to z̄, given in Theorem 2.1. It follows from (2) that ui(t) = 0 for
i /∈ Ia(t) a.e. in [0, T ]. Therefore, from (1) we have that AIa(t)(t)>uIa(t)(t) = A(t)>u(t) =
−c(t) a.e. in [0, T ]. For i ∈ Ia(t) we have ai(t)

>z̄(t) = bi(t) a.e. in [0, T ]. In vectorial
notation, AIa(t)(t)z̄(t) = bIa(t) a.e. in [0, T ]. Keeping this in mind, we obtain

G(w̄) ≥ G(w̃) =

∫ T

0
b(t)>w̃(t)dt = −

∫ T

0
b(t)>u(t)dt

= −
∫ T

0
bIa(t)(t)>uIa(t)(t)dt = −

∫ T

0
z̄(t)>AIa(t)(t)>uIa(t)(t)dt

=

∫ T

0
z̄(t)>c(t)dt = F (z̄).

On the other hand, we have from the weak duality property that G(w̄) ≤ F (z̄). Thus,
G(w̄) = F (z̄).

Observe in the proof of the last theorem that (β-RC) was only needed to prove that
the optimal values of the primal and dual problems coincide. The other statement, which
is a direct consequence of weak duality, always holds.

Corollary 3.1. Let z̄ ∈ Ω be an optimal solution of (CLP). Assume that (β-RC) is sat-
isfied at z̄. Then w̃ = −u, where u ∈ L∞([0, T ];Rn) is the Lagrange multiplier associated
to z̄, given in Theorem 2.1, is an optimal solution of (CDP) with G(w̃) = F (z̄).

Proof. We know from Lemma 3.1 that w̃ ∈ Θ and we saw in the proof of Theorem 3.6 that
G(w̃) = F (z̄). It follows from Theorem 3.6 that w̃ is an optimal solution of (CDP).

Theorem 3.7 (Complementary Slackness Theorem). Let z̄ ∈ L∞([0, T ];Rn) and w̄ ∈
L∞([0, T ];Rm). Assume that (β-RC) is satisfied at z̄. Then, solutions z̄ ∈ L∞([0, T ];Rn)
and w̄ ∈ L∞([0, T ];Rm) are optimal for (CLP) and (CDP) if, and only if,

A(t)z̄(t) + ȳ(t) = b(t), ȳ(t) ≥ 0 a.e. in [0, T ], (4)

A(t)>w̄(t) = c(t), w̄(t) ≤ 0 a.e. in [0, T ], (5)

ȳ(t)>w̄(t) = 0 a.e. in [0, T ]. (6)

Proof. Suppose that z̄ ∈ L∞([0, T ];Rn) and w̄ ∈ L∞([0, T ];Rm) are optimal for (CLP)
and (CDP). It is clear that z̄ ∈ Ω and that w̄ ∈ Θ. Defining ȳ(t) = b(t) − A(t)z̄(t) a.e.
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in [0, T ] and taking into account that z̄ ∈ Ω, it follows that (4) holds. The validity of
(5) follows directly from w̄ ∈ Θ. If w̃ = −u, where u ∈ L∞([0, T ];Rn) is the Lagrange
multiplier associated to z̄, we have from Corollary 3.1 that∫ T

0
ȳ(t)>w̄(t)dt =

∫ T

0
[b(t)−A(t)z̄(t)]>w̄(t)dt

=

∫ T

0
b(t)>w̄(t)dt−

∫ T

0
z̄(t)>A(t)>w̄(t)dt

=

∫ T

0
b(t)>w̄(t)dt−

∫ T

0
z̄(t)>c(t)dt

= G(w̄)− F (z̄) = G(w̃)− F (z̄) = 0.

As ȳ(t)>w̄(t) ≤ 0 a.e. in [0, T ], (6) holds.

Reciprocally, if (4)-(6) hold, it is clear that z̄ ∈ Ω and that w̄ ∈ Θ. Moreover,

G(w̄) =

∫ T

0
b(t)>w̄(t)dt =

∫ T

0
[A(t)z̄(t) + ȳ(t)]>w̄(t)dt

=

∫ T

0
z̄(t)>A(t)>w̄(t)dt+

∫ T

0
ȳ(t)>w̄(t)dt =

∫ T

0
z̄(t)>c(t)dt

= F (z̄).

By Theorem 3.6, we conclude that z̄ ∈ Ω and that w̄ ∈ Θ are optimal solutions of (CLP)
and (CDP).

Note that the assumption that (β-RC) is valid, in theorem above, is needed only to
establish that conditions (4)-(6) are necessary when we have optimal solutions of primal
and dual problems. The other statement holds without such an assumption.

Theorem 3.8. If the primal problem (CLP) has an optimal solution in which (β-RC) is
satisfied, then the dual problem (CDP) has an optimal solution.

Proof. If (CLP) has an optimal solution, we know from Corollary 3.1 that (CDP) also has
an optimal solution.

Theorem 3.9. Assume that there exists KA > 0 such that det(A(t)>A(t)) ≥ KA a.e. in
[0, T ]. If the dual problem (CDP) has an optimal solution, then the primal problem (CLP)
has an optimal solution.

Proof. If (CDP) has an optimal solution, say w̄, it follows from Theorem 4.1 in Monte
and de Oliveira [4], that there exist u ∈ L∞([0, T ];Rn) and v ∈ L∞([0, T ];Rm) such that
b(t)+A(t)u(t)−v(t) = 0, v(t) ≥ 0 and v(t)>w̄(t) = 0 a.e. in [0, T ] (the existence of KA > 0
such that det(A(t)>A(t)) ≥ KA a.e. in [0, T ] implies that the full rank assumption in [4]
is satisfied). The pair (z̄, ȳ) = (−u, v) satisfies (4). It is clear that w̄ satisfies (5) and
that v(t)>w̄(t) = 0 a.e. in [0, T ] implies that (6) also holds. It follows from Theorem 3.7
(Complementary Slackness Theorem) that z̄ is an optimal solution of (CLP).
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4 Conclusions

Duality theory for continuous-time linear optimization problems with inequality con-
straints was carried out. Classical duality results such as weak and strong duality proper-
ties and the complementary slackness theorem were established, where regularity condi-
tions were necessary. Such regularity conditions are less restrictive than those encountered
in the literature. Thus, this work gives theoretical contributions to the class of continuous-
time optimization problems. As already mentioned in the introduction, such problems were
introduced in the fifties by Bellman in [2] as, according to Bellman himself, an interesting
and significant class of production and allocation problems, called “bottleneck problems”.
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