Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Ajuste de Funções não Lineares via Programação por Metas

Gabriela C. de Almeida¹

UNESP, Programa de Pós-graduação em Biometria, Botucatu, SP, Brasil

Marta H. de Oliveira²

UNESP, Programa de Pós-graduação em Biometria, Botucatu, SP, Brasil

Leandro W. Marcucci³

UNESP, Programa de Pós-graduação em Biometria, Botucatu, SP, Brasil

Eduardo R. Pinto⁴

UNESP, Programa de Pós-graduação em Biometria, Botucatu, SP, Brasil

Helenice de O. Florentino⁵

UNESP, Departamento de Bioestatística, Instituto de Biociências, Botucatu, SP, Brasil

Daniela R. Cantane⁶

UNESP, Departamento de Bioestatística, Instituto de Biociências, Botucatu, SP, Brasil

Dylan F. Jones⁷

Departamento de Matemática, Universidade de Portsmouth, Inglaterra

A Programação por Metas (PM) é uma metodologia de modelagem matemática de problemas nos quais Q metas devem ser atingidas. Para isto, são definidas variáveis de desvios d_i^+ (desvio acima dos alvos) e d_i^- (desvio abaixo dos alvos), em torno dos alvos a serem alcançados y_i ($i=1,\ldots,Q$), obtendo valores acima ou abaixo dos alvos desejados, respectivamente. O objetivo de um modelo de PM é minimizar os desvios indesejados utilizando ferramentas clássicas de otimização para obtenção da solução ótima.

Neste trabalho são abordadas três variações da PM: a Ponderada (PMP), a de Chebyshev (PMC) e a Estendida (PME) [2]; estas diferem entre si pela formulação da função objetivo. A PMP estabelece pesos para cada um dos desvios em torno dos alvos a serem alcançados e seu objetivo é minimizar a soma ponderada dos desvios indesejados [3]. O propósito da abordagem de PMC é minimizar o desvio máximo para os alvos a serem alcançados, fornecendo assim, uma solução equilibrada em relação as metas declaradas. A terceira abordagem é PME, que é a combinação dos objetivos da PMP e PMC. Considerando Q metas a serem atingidas e $\lambda > 0$ o limitante superior sobre os desvios, a

¹gabriela.colovati@unesp.br

²marta.oliveira@unesp.br

³leandro.marcucci@unesp.br

⁴eduardo.pinto@unesp.br

⁵helenice.silva@unesp.br

⁶daniela.cantane@unesp.br

⁷dylan.jones@port.ac.uk

2

formulação algébrica da função objetivo da PME é $\alpha\lambda + (1-\alpha)\sum_{i=1}^Q \frac{u_id_i^-}{|y_i|} + \frac{v_id_i^+}{|y_i|}$, no qual u_i, v_i são pesos não-negativos, para cada um dos desvios, e $\alpha \in [0,1]$: se $\alpha=0$ ou $\alpha=1$, tem-se a PMP ou PMC, respectivamente.

Considerou-se uma função não linear $f(\overline{a}_0, \overline{a}_1, x_i)$, definida em um conjunto de pontos (x_i, y_i) , em que $i = 1, \ldots, Q$, para o ajuste. Os parâmetros ótimos \overline{a}_0 e \overline{a}_1 são obtidos quando a função f_i se igualar aos alvos y_i , para todo i, ou seja,

$$f(\overline{a}_0, \overline{a}_1, x_i) = y_i,$$
 em que $i = 1, \dots, Q$. (1)

Utilizou-se a PM para determinação destes parâmetros. Nessa metodologia faz-se o relaxamento da equação (1) através da inserção das variáveis de desvios d_i^+ e d_i^- obtendo a expressão $f(a_0, a_1, x_i) - d_i^+ + d_i^- = y_i$, para $i = 1, \ldots, Q$, a qual faz parte das restrições do problema de otimização. Dessa maneira, faz-se a minimização da função objetivo escrita em termos dos desvios d_i^+ e d_i^- , e obtém-se os valores ótimos dos parâmetros a_0 e a_1 quando os desvios forem nulos.

Os métodos foram aplicados a dados experimentais da inativação de Salmonella spp. em carne moída suína, utilizada na fabricação de produtos cárneos embutidos [1]. As técnicas de PM foram comparadas com os métodos clássicos de ajustes: Método dos Mínimos Quadrados e Método de Levenberg-Marquardt e a eficiência de cada método foi analisada através do erro absoluto nas normas do máximo e da soma. Os resultados alcançados mostraram que a PM é eficaz tanto quanto, ou mais que, os métodos clássicos citados. Os valores dos parâmetros $a_0 = 8.0449$ e $a_1 = -1.7582$ forneceram o melhor ajuste da função f(x), sendo que foram obtidos pela PME, e apresentaram erro de 0.4265 na norma do máximo e 2.3408 na norma da soma. Assim, concluímos que a PME foi a melhor estratégia, para o ajuste de funções, quando comparada às demais metodologias da PM utilizadas.

Agradecimentos

Esse trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001, CNPq Número 302454/2016-0, da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Processo: 2013/07375-0, PROPe UNESP, PROPG Edital 10/2017 e Famat/UFU.

Referências

- [1] L. S. Caixeta, M. F. Zotarelli e M. H. Oliveira. Uso da microbiologia preditiva para a predição do crescimento microbiano em produtos cárneos embutidos, *Anais do II Simpósio de Tecnologia e Ciência*, p. 43, 2016.
- [2] D. Jones e M. Tamiz. Practical Goal Programming. Springer US, 2010.
- [3] M. Tamiz e D. F. Jones. A review of Goal Programming and its applications, *Annals of Operations Research*, 58:39–53, 1995. DOI: 10.1007/BF02032309.