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Abstract. In this work we study the asymptotic behavior of periodic solutions in one-
parameter (A > 0) families of Liénard differential equations, for large values of A. Under
certain conditions, we prove the existence of a relaxation oscillation, occurring upon variation
of the parameter.
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1 Introduction and main result

Relaxation oscillation is a kind of global phenomenon that typically occurs in slow-fast
differential systems (see [4,6,7]). It is characterized by a special type of periodic orbit
consisting of long periods of quasi-static motion interspersed with short periods of rapid
transition. A prototypical model where relaxation oscillation occurs is the classical van
der Pol equation which models the oscillations of a triode vacuum tube (see [5,8]).

In this work we consider one-parameter A > 0 families of Liénard differential equations
of the form

2" + A\f(z)r' +x =0. (1)

In (1) the prime indicates derivative with respect to the time t. Note that for f(x) = 22 -1
we get the van der Pol equation.
Taking 2’ = y the equation (1) can be converted into the first order differential system

=y, Y =—z—X\f(2)y. (2)

In this work we are concerned with the study on the existence and uniqueness of limit
cycles of system (2) for all positive values of A, and mainly on the asymptotic behavior of
such limit cycle for large values of A > 0.
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The assumptions we are going to make are as follows. Consider the auxiliary function

- /0 " fs)ds, (3)

(H1) f is a C?>-function on R having precisely two zeros, xj; and x,,, such that z); <
0 <y and f(xpr) <0< f(zm).

and assume the hypotheses:

(H2) The straight lines y = F(zp) and y = F(z,,), passing through the points A =
(xar, F(xp)) and B = (2, F(24,)), intersect the graphic of F at the points A’ # A
and B’ # B, respectively.

(H3) The differential system (2) has at most one limit cycle.

Remark 1.1. Hypothesis (H3) is a qualitative assumption on the system (2). It is
worthwhile to say that there are many analytical conditions for which it holds (see, e.g.,
the books [9,10]).

In what follows we define some preliminary objects before stating our main result.
Take z1 < 0 < x9 such that A’ = (a9, F(xp)) and B’ = (21, F(zy,)). From (H2) it
follows that x1 # x,, and x2 # x7. From (H1) and (H2) we find exactly two zeros of F,
x7 and x3, such that 27 <0 <. Clearly x1 < 2] < and z, < x5 < 2. Let AA” and
BB’ be the line segments joining A to A’ and B to B’, respectively. Let A'B and B’A be
the pieces of Gr(F') joining A’ to B and B’ to A, respectlvely We define Ty C R? as being
the closed curve given by the union I'g = AA’ U ABUBB' UB A see Figure 1.

—

B”

Figura 1: The closed curve I'y.

Our main result is the following one.

Theorem 1.1. Under the hypotheses (H1), (H2), and (H3), the following statements
hold:

(i) For every X > 0, the differential system (2) has a unique stable limit cycle ®(\)
depending continuously on A.
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(ii) Let Py(z,y) = (x, F(x) + y/\) be an one—parameter family of diffeomorphims. Then

Jim dp (2(A), Py () = 0. (4)

where dg(-,-) denotes the Hausdorff distance.

Remark 1.2. The limit given in (4) means that, for sufficiently large values of X, after a
change of coordinates, the limit cycle ®(\) approaches the closed curve T'y.

2 Preliminary

In what follows we describe some ideas involving slow-fast singularly perturbed systems
and the relaxation oscillation theory occurring in such systems. Consider a slow-fast
differential system in R? of the form

dz dy
ME - g(xvyau)a % - h(l‘aynu’)7 (5)

where g and h are C"—functions with r > 3. For u > 0, system (5) is equivalent to

dz dy
- = 9@,y ), i LUCADE (6)

which is obtained after the time rescaling 7 = s/u. System (5) is the slow system and (6)
is the fast system. A usual way to treat with slow-fast systems is through the geometric
singular perturbation theory (GSPT), see [1,3]. The idea is to study the (limiting) slow
and fast dynamics separately and then combine results on these two limiting behaviours
in order to obtain information on the dynamics of the full system (5) (or (6)) for small
values of pu.

Letting © — 0 in (5) and in (6) we obtain, respectively, the reduced problem

d
0= g(z,9,0), dfy = h(z,y,0), (7)
S
and the layer problem
dx dy

The phase space of (7) is the so-called critical manifold defined by S = {(x,y) € R? :
g(x,y,0) = 0}. On the other hand, S is the set of equilibria for the layer problem (8).
Among other things, Fenichel theory [3] (see also [1]) guarantees the persistence of a
normally hyperbolic subset Sy C S as a slow manifold S, of (5) (or (6)) for small enough
values of 1 > 0. Moreover, the flow on S, is a small perturbation of the flow of (7) on Sp.
Normal hyperbolicity of Sy means that (0g/0x)(x,y) # 0 for all (z,y) € Sp. That is, Sy
is normally hyperbolic if for each (Z,y) € Sp, we have that Z is a hyperbolic equilibrium
point of (dx/dr) = g(x,7,0).

Generically, a non—normally hyperbolic point is a fold point of S. In the case when the
critical manifold & has non—normally hyperbolic points, interesting global phenomena can
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Figura 2: Panel (a) illustrates the phase portraits of (7) and (8) (double and single arrows indicate the
direction of the fast and slow flows, respectively), under the hypotheses (C1)—(C4). Panel (b) illustrates
the singular trajectory I'.

occur. For instance, an interesting kind of global phenomenon is the relaxation oscillations.
A relazation oscillation is a periodic solution I',, of the slow—fast system (5) that converges
to a singular trajectory I'g, when u — 0, with respect to Hausdorff distance. A singular
trajectory means a curve obtained as concatenations of trajectories of the reduced and
layer problems (with a consistent orientation) forming a closed curve.

In what follows we describe a well known prototypical situation where a relaxation
oscillation exists (see, e.g., [4,6,7]). The following assumptions will be considered.

(C1) S can be written in the form y = ¢(z) and the function ¢ has precisely two critical
points, one minimum Z,, and one maximum Z s, both non-degenerate (folds).

(C2) The fold points are generic, i.e.

gig(mm, ¢(Tm), 0) # 0, Z:Z(:cm, ¢(Tn),0) 0, h(Zm, $(Tm),0) # 0,
0%g 9y

552 @5 ¢(T1), 0) # 0, @(fMa O(Tm),0) # 0, (T, ¢(Tar),0) # 0.

(C3) (9g9/0z) <0 on & = {(z,p(x)) : © < Ty} and on S, = {(x,P(x)) : © > Tpr}, and
(0g/0x) > 0 on S, = {(x,d(x)) : Ty, < & < Tpr}. This means that for the layer
problem (8) the branches S; and S, are attracting while S, is repelling.

(C4) The slow (reduced) flow on S; and S, satisfies that (dy/ds) < 0 and (dy/ds) > 0,
respectively.

Assuming the hypotheses (C1)—(C4), Figure 2(a) illustrates the phase portraits of the
reduced and layer problems (7) and (8).

Let be C = (T, ¢(Tp)) and D = (Tpr, d(Tpr)). Let €' and D' be the points of
intersection of the straight lines y = ¢(Z,,) and y = ¢(Tps) with S, and S, respectively.
Consider I' the singular trajectory defined as the union of the fast fibers joining C' to C’
and D to D’ and of the two pieces of the critical manifold S joining C’ to D and D’
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to C. See Figure 2(b). Let V be a small tubular neighborhood of I". Then, under the
assumptions (C1)—(C4), for  small enough, system (5) admits a unique stable limit cycle
I'y C V which converges to I' in the Hausdorff distance as 1 — 0 (see [4,6,7]).

3 Proof of Theorem 1.1

Proof of Theorem 1.1. To prove item (i) we will use the Dragilév’s Theorem [2] (see also
Theorem 5.1 of [9]). Dragilév’s Theorem considers systems of the form

o=y, Y =-g@) - fl)y, (9)
and assumes the following conditions:
(B1) The functions F'(z) and g(z) are locally Lipschitz, where F(x) = [ f(s)ds.
(B2) zg(x) > 0 for x # 0, G(£00) = +00, where G(z) = [ g(s)ds.

(B3) There exist a; < 0 < ag, such that F(x) > 0, for a; < z < 0, and F(z) < 0, for
0<z<Las.

(B4) There exist k& > max{—aj,as}, and by < by such that F(x) < by if x < —Fk, and
F(z)>byif x > k.

Under the above conditions, Dragilév’s Theorem states that the differential system (9) has
at least one stable limit cycle.

From the hypothesis (H1), F(z) is a differentiable function and, for the differential
system (2), g(z) = x. Therefore F(z) and g(z) are locally Lipschitz and then condition
(B1) is satisfied. Condition (B2) is trivially true because G(x) = z%/2. Now taking
a; = xp and ay = x, we see that hypothesis (H2) implies condition (B3). Finally
condition (B4) is assured by hypotheses (H1) and (H2) if we take k > max{—x1,x2},
by = F(zy,), and by = F(x)r). Therefore, from Dragilév’s Theorem we have assured, for
each A > 0, the existence of a stable limit cycle ®(\) of the differential system (2). Clearly
hypothesis (H3) implies its uniqueness for each A > 0. The continuous dependence of
®(\) on A follows from basic facts of the qualitative theory of ODEs.

To prove item (ii) first we transform system (2) into a slow-fast system. For that, we
define a new independent variable s setting s := ¢/A. This leads to system & = \y,y =
—A\x — A?f(z)y, where the dot means derivative with respect to s. Then, we apply the
change of coordinates (z,u) = Py(z,y) = (v, F(z) +y/\), where F is given in (3), getting
the system (1/A\?)i = u— F(z),% = —x. Finally, setting 1 := 1/A? and considering \ large
enough, we get the following slow-fast system with small perturbation parameter u:

ut =u— F(x), U= —zx. (10)
Comparing system (10) with the general form (5), we have that g(x,u,u) = u — F(x)

and h(z,u,u) = —x. The critical manifold is given by S = {(z,u) € R? : u = F(x)}.
From the hypothesis (H1), it follows that F' has precisely two critical points, zj; and
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Figura 3: Panel (a) illustrates the singular trajectory I'o and panel (b) illustrates the phase portraits of
the layer and reduced problems associated with system (10). The double and single arrows indicate the
direction of the fast and slow flows, respectively.

T, since F'(z) = f(z) for all x € R, and x), and z,, are the only zeros of f. Moreover,
as F"(zpr) = f'(xpr) < 0 and F"(zy,) = f'(x) > 0, then A = (zpr, F(xp)) and B =
(Zm, F(z,)) are maximum and minimum points of F, respectively, both non-degenerate.
Also these two fold points are generic, since

2
D) = P aa) £0, SLA) =140, h(A) = —ex £0,
0? 0
S5(B) = —F(@n) 0, Z2(B)=1#0, h(B)=—2n #0.

From the hypothesis (H1), we can conclude that F'(x) < 0 for x € (zpr, T ), and F'(z) >
0 for x € (—o0,zp) U (T, +00). Therefore, for the layer problem given by & = u —
F(z),% = 0, the branches §; = {(z, F(z)) : < zp} and S, = {(z, F(z)) : © > x,,} are
attracting while the branch S,, = {(z, F(z)) : z; < < xp,} is repelling. Relative to
dynamics of the reduced problem, we have that the slow flow on §; satisfies & > 0 and on
S, it satisfies that © < 0. On &, the reduced problem has a repeller equilibrium at the
point (0, F(0)) = (0,0). In short, from the hypothesis (H1), we have that the fast and
slow dynamics are as illustrated in Figure 3(b).

We remark that the situation presented above involving system (10) is not exactly
the same as in prototypical situation described from the assumptions (C1)-(C4). In
this last case the critical manifold S is S—shaped while in our case § has the shape of a
S but reflected. Mathematically speaking, the two situations coincide after a reflection
(X,Y) = (—=z,y) on the y-axis.

Let U be a small tubular neighborhood of I'y. Then, under the hypotheses (H1) and
(H2) it follows that, for p small enough, system (10) has a unique stable limit cycle
I’y € U which converges to I'g in the Hausdorff distance as ¢ — 0. Consequently, using
the reverse change of coordinates, we can conclude that, for A > 0 sufficiently large, there
exists a unique stable limit cycle ®1(\) C U for system (2) such that

lim d(®1(A), Py (To)) = 0.

Clearly, hypothesis (H3) implies that ®(\) = ®1(\), for A > 0 sufficiently large. O
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4 Conclusion

In this work we consider one-parameter A > 0 families of Liénard differential equations
(1). For each A > 0, we prove the existence of a limit cycle ®(\) as well as its continuous
dependence on A. We also provide the asymptotic behavior of such limit cycle for large
values of A > 0. When \ assumes large values, the differential system (2) can be converted
into a slow-fast system which can be treated with the techniques coming from the geometric
singular perturbation theory. Under the hypotheses (H1) and (H2) we establish the
existence of a relaxation oscillation approaching to the singular trajectory 'y, when the
parameter A takes large values.
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