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Abstract. Two circles of ideas permeate a great deal of the specialized literature on stochas-
tic modelling nowadays: that which study long-range dependence phenomena, with partic-
ular emphasis on fractional Brownian motion, and the one which considers stochastic dif-
ferential equations with Markov switching. In this paper we put together these topics by
analysing a class of stochastic differential equations with Markov switching and subject to a
fractional Brownian motion perturbation. We prove global existence and uniqueness results
for this class of stochastic equations. This, in turn, set the stage for an avenue of research
associated with this class of models which seems promising; particularly that associated with
control problems.
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1 Introduction

In spite of the fact that classical stochastic control theory of dynamical systems driven
by Brownian motions has been widely celebrated as a great achievement in stochastic
analysis and of fundamental importance in applications, it has been realized that there
are a wide range of applications in which the Brownian motion modelling of disturbance
is not fully adequate. This happens, for instance, when the issue of long-range dependence
(notice that Brownian motion has independent increments) comes to the fore in analysing
the problem. In view of that, appropriate stochastic models for long-range dependent
phenomena have attracted a great deal of interest in recent years. In particular, stochastic
systems in which the driving process is a fractional Brownian motion (fBm) has been used.

The first systematic attempt to weave fBm into the stochastic process theory frame-
work was made in [8]. Roughly speaking, fBm is a self-similar Gaussian processes with
stationary increments (it is nonstationary as a whole). In fact, fBm is governed by a param-
eter H called Hurst parameter. It is the Hurst parameter that governs the self-similarity
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degree; the long-range dependence degree (the decaying rate of the autocorrelation coef-
ficient function) and the irregularity of sample paths. It is a well-known result that for
each H there exist a unique Gaussian process, self-similar, vanishing at the origin and
having stationary increments. So, a fBm, which we denote by BH = {BH(t), t ∈ [0, T ]},
is a continuous and centered Gaussian process with covariance function

E[BH(t)BH(s)] =
1

2
(t2H + s2H− | t− s |2H), s, t ∈ R+, (1)

where H is the Hurst parameter in (0, 1). When H ≥ 1/2 the correlation is positive and
we say that fBm has the property of long-range dependence. Throughout this paper it is
assumed that H ∈ (1/2, 1) is arbitrary but fixed.

The main technical hindrance in dealing with fBm is the fact that this process is not a
semimartingale (except when is ordinary Brownian motion). In addition, it is not Marko-
vian. Therefore, it is not possible, for instance, to make use of the powerful machinery of
stochastic calculus, available in the current literature. Although it has not been possible to
define up to now a general theory of stochastic integral for H ∈ (0, 1), it has been possible
to advance in this regard for some sub-intervals. This subject has been investigated by a
substantial number of authors and a host of recent new results has appeared in the spe-
cialized literature (see, for instance [1, 10]). This, in turn, has allowed various interesting
mathematical applications in the context of fBm, with a particular bearing in the study
of stochastic differential equations (SDE’s) driven by fBm. For instance, a general class
of SDE driven by an n−dimensional fBm BH is the following:

x(t) = x(0) +

∫ t

0
b(s, x(s))ds+

∫ t

0
σ(s, x(s))dBH(s) (2)

where b, σ representing measurable random fields with appropriate dimensions. SDE’s of
this kind have been studied by many authors, see, for example, [3,5,11], to mention a few.
Nudged by the significant body of results on stochastic integral for fBm, equation (2) have
been used in the study of the stochastic control problem for dynamical systems with fBm
perturbation. Although the results are of comparatively recent vintage and still meager,
this avenue of research seems to be very encouraging and therefore has, in recent years,
generated a flurry of interest. To some extent, the study has been focused in the case of
linear dynamical systems driven by fBm and a quadratic cost functional. Initial work on
this scenario was carried out, for instance, in [4].

In this paper, we are interested in multidimensional SDE’s with Markovian switching
of the integral form

x(t) = x(0) +

∫ t

0
b(x(s), s, θ(s))ds+

∫ t

0
σ(x(s), s, θ(s))dBH(s) (3)

where θ(t) is a Markov chain taking values on S = {1, 2, . . . , N}. This equation can also
be seen as a set of N equations (for more details see [9]). For the case in which (3) is
linear and the perturbation is modeled by the classical Brownian motion, this equation
has been dubbed in the specialized literature as Markov jump linear systems (MJLS) and
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the coherent body of theoretical results on this subject makes it by now a full fledged
theory (see, e.g., [2] and references therein). The theory of MJLS has contributed for
the solution of a long standing challenge in control theory which has been to characterize
mathematically uncertainty which is due to abrupt changes. This is a key issue to guarantee
specific behaviors and stringent performances of dynamical systems which are subject to
abrupt changes, such as failure.

In order to address adequately the problem of stochastic control for dynamical systems
modeled by (3), see for e.g. [6], a key underlying issue is to ensure existence and uniqueness
of solution for this stochastic equation. As far as the authors are aware, there is no available
result on the literature on this regard. In view of this, we carry out in this paper a first
systematic attempt to provide some preliminaries results on the issue of existence and
uniqueness of solution for this equation. Due to the strongly non-Markovian nature of
fBm, the most natural way to define the stochastic integral is to do it pathwise, for a.e.
ω as in [11].

An outline of the content of this paper goes as follows. In section 2 we formulate our
problem. In section 3 we provide the basic facts of the theory used in this paper. In
section 4 we prove the main result on existence and uniqueness of solution for stochastic
differential equations driven by a fBm with H > 1/2 and subject to Markovian switching.

2 Problem formulation

Let us fix an underlying complete probability space (Ω,F , P ) carrying the following
independent processes:

1. A Rn−valued zero mean standard fractional Brownian motion with Hurst parameter
H ∈ (1

2 , 1) denoted by BH = {BH(t); t ∈ [0, T ]} such that BH(0) = 0. The filtration
F = {Ft, t ≥ 0} satisfying the usual conditions.

2. An homogeneous Markov process θ = {θ(t), t ∈ [0, T ]} adapted to Ft, with right
continuous trajectories, taking values on the finite set S = {1, 2, . . . , N} and with a
stationary standard transition probability matrix function {P∆(i, j)}i,j∈S given by

P∆(i, j) = P (θ(t+ ∆) = j|θ(t) = i) =

{
λij∆ + oij(∆), i 6= j

1 + λii∆ + oii(∆), i = j

with o(∆) denoting an infinitesimal of higher order than ∆, and with infinitesimal
matrix Λ = (λij)i,j∈S, here λij ≥ 0 is the transition rate from i to j if i 6= j while
λii = −

∑
j 6=i λij .

Equation (3) is equivalent to the following n−dimensional SDE with Markovian switching
of the form {

dx(t) = b(t, x(t), θ(t))dt+ σ(t, x(t), θ(t))dBH(t)

x(0) = x0 ∈ Rn, θ(0) = i, t ∈ [0, T ], i = 1, . . . , N,
(4)

where b and σ are measurable continuous functions wit b(·) : [0, T ] × Rn × S → Rn, and
σ(·) : [0, T ]× Rn × S→ Rn×m.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0440 010440-3 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0440


4

To ensure existence and uniqueness of solutions for SDE (4) we impose the following
assumptions which are supposed to hold P−almost surely for ω ∈ Ω, i.e., the inequalities
are supposed to hold for P− a.s. ω ∈ Ω.

Hypothesis (H1): The function b(·) is Lipschitz continuous and has linear growth in the
variable x, uniformly in t, that is, there exists L1 > 0 such that the following properties
hold for each j = 1, . . . , n and for all t ∈ [0, T ]:{

|b(t, x, i)− b(t, y, i)| ≤ L1|x− y|,∀x, y ∈ Rn;

|b(t, x, i)| ≤ L2(|x|+ 1),∀x ∈ Rn.

Hypothesis (H2): The function σ(·) is Lipschitz continuous and continuously differ-
entiable and with the bounded derivative satisfying a local Hölder continuity property
in x, and Hölder continuous in time, that is, there exist some constants β, δ such that
0 < β, δ ≤ 1 and for every R ≥ 0 there exists MR > 0 such that the following properties
hold for each i = 1, . . . , n and for all x, y ∈ Rn and s, t ∈ [0, T ]:

|σ(t, x, i)− σ(s, y, i)| ≤M0|x− y|;
|∂xjσ(t, x, i)| ≤M1;

|∂xjσ(t, x, i)− ∂yjσ(t, y, i)| ≤MR|x− y|δ, ∀|x|, |y| ≤ R;

|σ(t, x, i)− σ(s, y, i)|+ |∂xjσ(t, x, i)− ∂xjσ(s, x, i)| ≤M0|t− s|β,

where ∂xj denotes the partial derivative of x with respect to variable xj and the constants
L1, L2,M0,M1 and MR may depend on ω ∈ Ω.

3 Preliminaries

Let us consider the following normed spaces4. Fix 0 < α < 1/2 and denote by

1. Wα,∞
0 ([0, T ];Rd), the space of measurable functions f : [0, T ]→ Rd such that

‖f‖α,∞ := sup
t∈[0,T ]

(
|f(t)|+

∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds
)
<∞.

2. Cα(0, T ;Rd), for any 0 < α ≤ 1, the space of α−Hölder continuous functions f :
[0, T ]→ Rd, equipped with the norm

‖f‖α := ‖f‖∞ + sup
0≤s<t≤T

‖f(t)− f(s)‖
(t− s)α

<∞, where ‖f‖∞ := sup
t∈[0,T ]

|f(t)|.

3. W 1−α,∞
T (0, T ), the space of measurable functions g : [0, T ]→ R such that

‖g‖1−α,∞ := sup
0<s<t<T

(
|g(t)− g(s)|
(t− s)1−α +

∫ t

0

|g(s)− g(y)|
(y − s)2−α dy

)
<∞.

4These spaces were introduced by Nualart and Răşcanu [11]
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4. Wα,1
0 (0, T ), the space of measurable functions f on [0, T ] such that

‖f‖α,1 :=

∫ T

0

|f(s)|
sα

ds+

∫ T

0

∫ s

0

|f(s)− f(y)|
(s− y)α+1

dyds <∞.

Remark 3.1. Given any ε such that 0 < ε < α, we have the following inclusions Cα+ε ⊆
Wα,∞

0 ⊆ Cα−ε and C1−α+ε(0, T ) ⊂W 1−α,∞
T (0, T ) ⊂ C1−α(0, T ), ∀ε > 0.

Remark 3.2. The trajectories of fractional Brownian motion BH , for any 0 < α < H,
belong to Cα(0, T ;Rd) almost surely. Therefore, by (3.1), we obtain that the trajectories
of BH for any 0 < α < H belong to Wα,∞

0 almost surely.

The following two propositions are generalized results of [11].

Proposition 3.1. Fix 0 < α < 1/2. Let F
(b)
t (f) =

∫ t
0 b(s, f(s), i)ds be a Lebesgue in-

tegral with b satisfying the assumptions (H1) with ρ = 1
α . If f ∈ Wα,∞

0 (0, T ;Rn) then

F
(b)
t (f) ∈ C1−α(0, T ;Rn) ⊂ Wα,∞

0 (0, T ;Rn) and ‖F (b)(f)‖1−α ≤ C(1 + ‖f‖∞), with a
positive constant C depending on α, T and L0.

Proposition 3.2. Let f ∈Wα,1
0 (0, T ) be the integral G

(σ)
t (f) =

∫ t
0 σ(s, f(s), i) dBH

s , with

σ satisfying the assumptions (H2) with β > α. If f ∈ Wα,∞
0 (0, T ;Rn), then G(σ)(f) ∈

C1−α(0, T ;Rn) ⊂ Wα,∞
0 (0, T ;Rn) and ‖G(σ)(f)‖1−α ≤ D + M0‖f‖α,∞, with a positive

constant D depending on T, α, β and M0.

The next theorem, proved in [5], ensures the existence and pathwise uniqueness of a
strong solution for (2).

Theorem 3.1. Let b and σ be continuous functions. Such that b is Lipschitz continuous
and linear growth in the second variable and uniformly in the first, and σ is continuously
differentiable in x and with partial derivative being bounded and local Hölder continuous
with parameter δ, and Hölder continuous in time with parameter β. Under these assump-
tions, if 1 − H < α < min{1

2 , β,
δ
2} for δ, β ∈ (0, 1], then there exists a unique strong

solution of the stochastic equation (2).

4 Existence and Uniqueness Result

Definition 4.1. An Rn−valued stochastic process X = {X(t); t ∈ [0, T ]} is called a solu-
tion of (4) if: X is Ft−adapted; a.s. the trajectories of X belong to Wα,∞

0 ([0, T ];Rn) and
the equation (3) holds with probability 1. In particular, a solution X = {X(t); t ∈ [0, T ]}
is said to be unique if any other solution X̂ = {X̂(t); t ∈ [0, T ]} is indistinguishable from
X.

Theorem 4.1. Assume that the coefficients b and σ satisfy the assumptions (H1) and
(H2), respectively, with δ, β ∈ (0, 1]. If 1 − H < α < min{1

2 , β,
δ
2}, then there exists a

unique solution X ∈ Wα,∞
0 (0, T ) of SDE given by (3). Moreover the solution is Hölder

continuous of order 1− α.
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Proof. First, it is not difficult to prove thatX is Ft−adapted. Second, ifX ∈Wα,∞
0 (0, T ;Rn)

is a solution of equation (3), then X ∈ C1−α(0, T ;Rn). In fact, for all u ∈Wα,∞
0 (0, T ;Rn)

we have F (b)(u) and G(σ)(u) belong to C1−α(0, T ;Rn) by Proposition 3.1 and Proposi-
tion 3.2, respectively. Hence

X = x0 + F (b)(X) +G(σ)(X) ∈ C1−α(0, T ;Rn) ⊂Wα,∞
0 .

Then, since almost every sample path of the Markov process θ(·) is right-continuous step
function with a finite number of simple jumps on [0, T ], there is a sequence {τ`}`≥0 of
stopping times such that:

· for almost every ω ∈ Ω there is a finite ¯̀= ¯̀(ω) for 0 = τ0 < τ1 < · · · < τ¯̀ = T and
τ` = T if ` > ¯̀;

· θ(t) is a random constant on every stochastic interval [τ`, τ`+1[, i.e. for every ` ≥ 0
θ(t) = θ(τ`) on τ` ≤ t < τ`+1.

We first consider (3) in the stochastic interval [0, τ1[ which becomes

x
(1)
t = x0 +

∫ t

0
b(s, xs, θ0)ds+

∫ t

0
σ(s, xs, θ0)dBH(s) (5)

with initial conditions x0 and θ0. By Theorem 3.1 we can see that (5) has a unique solution

x
(1)
t which belongs to Wα,∞

0 (0, τ1;Rn). Next, consider (3) on t ∈ [τ1, τ2[ which becomes

x
(2)
t = xτ1 +

∫ t

τ1

b(s, xs, θ(τ1))ds+

∫ t

τ1

σ(s, xs, θ(τ1))dBH(s) (6)

with initial data xτ1 and θτ1 . Again, by Theorem 3.1, equation (6) has a unique solution

x
(2)
t which belongs to Wα,∞

0 (τ1, τ2;Rn). Bearing in mind that the Markov process θ(t) has
only a finite number of jumps in a finite time interval, we can repeat this procedure to
obtain a unique solution, X(t), for (3) in the interval [0, T ]. Such solution have the form

X(t) =


x

(1)
t , if t ∈ [0, τ1[

x
(2)
t , if t ∈ [τ1, τ2[

...

x
(`)
t , if t ∈ [τ`−1, T ].

5 CONCLUSIONS

We have established conditions for existence and uniqueness of solution for a class
of stochastic differential equations with Markov switching and subject to a fractional
Brownian motion perturbation. We believe that these results are particularly important
in the study of the control problem for this class of stochastic dynamical systems, since it
guarantees existence and uniqueness of solution.
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