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Abstract. In this work, it will be considered optimal control problems in which the ob-
jective function is interval-valued. The concept of optimality will be defined through the
lower-upper order relation (LU-order). Problem data is assumed to satisfy merely Lips-
chitz continuity. Necessary optimality conditions in the form of a maximum principle are
obtained.
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1 Introduction

Optimal control theory play an important role in a lot of problems where the objective
is to describe the “controls” that will cause a process to satisfy aerospace engineering,
biological, chemical, computational, economical, medical, physical, or social constraints
and at the same time these “controls” have to minimize some criterion. Many authors have
studied optimal control problems from different points of view and can be found in many
textbooks (for example, see M. Athans and P. L. Falb, [1], and E. R. Pinch [5]). Optimal
control problems are usually solved with the pontryagin maximum principle (PMP) (see
R. Vinter, [7]), which is a generalization of the classic Euler–Lagrange and Weierstrass
necessary optimality conditions for the calculus of variations, and here is not going to
be different. The goal of this work is to give necessary optimality conditions for interval
optimal control problems via classical bi-objective optimal control problems.

Given v, w ∈ Rn, we denote the usual inner product between v and w as v · w.

By v 5 w we mean vi ≤ wi for all i ∈ {1, 2, . . . , n}; by v ≤ w we mean vi ≤ wi for all
i ∈ {1, 2, . . . , n} and v 6= w; by v < w we mean vi < wi for all i ∈ {1, 2, . . . , n}.
L denotes the Lebesgue subsets of a given interval [a, b]; Bm denotes the Borel sets of

Rm; and L × Bm denotes the product σ−algebra.

Given a multifunction U : [a, b]⇒ Rn, Gr (U) means the graph of U .

The space of the absolutely continuous functions is denoted by W 1,1([a, b];Rn).
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Given a closed set S ⊂ Rn and a point x ∈ S, the set of all directions v ∈ Rn such
that there exists M > 0 satisfying v · (y − x) ≤M‖y − x‖2 for all y ∈ S, is said to be the
proximal normal cone to S at x, denoted by NP

S (x). The set of all directions v ∈ Rn such

that there exist sequences xi
S→ x and vi → v satisfying vi ∈ NP

S (xi) for all i, is said to be
the limiting normal cone to S at x, denoted by NS(x).

Let γ : Rn → R ∪ {+∞} be a lower semi-continuous function and x ∈ dom γ.
∂γ(x) is the limiting Mordukhovich’s subdifferential of γ at x defined as the set ∂γ(x) =
{ζ | (ζ,−1) ∈ Nepi γ(x, γ(x))}.

One of the main tools used in this work is the maximum principle for the following
multi-objective optimal control problem:

(MCP )


minimize g(x(a), x(b))

subject to x′(t) = γ(t, x(t), u(t)) a.e. t ∈ [a, b]

(x(a), x(b)) ∈ S,
u(t) ∈ U(t) a.e. t ∈ [a, b],

where g =
[
g1 g2 . . . gk

]>
: Rn × Rn → Rk, γ : [a, b] × Rn × Rm → Rn, S is a closed

subset of Rn × Rn, U : [a, b]⇒ Rn, a and b are fixed.

A measurable function u : [a, b] → Rm such that u(t) ∈ U(t) for a.e. t ∈ [a, b] is said
to be a control function.

A pair (x, u) consisting of x ∈ W 1,1([a, b];Rn) and u obeying the differential equation
above is called a process.

(x, u) is an admissible process if x corresponds to u ∈ U which satisfies (x(a), x(b)) ∈ S.

An admissible process (x∗, u∗) is a Pareto optimal process if there exists no other
admissible process (x, u) such that g(x(a), x(b)) ≤ g(x∗(a), x∗(b)).

An admissible process (x∗, u∗) is a weak Pareto optimal process if there exists no other
admissible process (x, u) such that g(x(a), x(b)) < g(x∗(a), x∗(b)).

Let (x∗, u∗) be an admissible process of (MCP ). For some δ > 0, the following are
satisfied:

(H1) The function γ(·, x, ·) is L × Bm measurable, for each x ∈ Rn;

(H2) There exists a L×Bm measurable function l : [a, b]×Rm → R such that t 7→ l(t, u∗(t))
is integrable, and for a.e. t ∈ [a, b], ‖γ(t, x, u) − γ(t, x̆, u)‖ ≤ l(t, u)‖x − x̆‖ for all
x, x̆ ∈ x∗(t) + δB and for all u ∈ U(t), where B := B(0 , 1) = {x ∈ Rn | ‖x‖ < 1}
denotes the open unit ball in Rn;

(H3) Gr (U) is L × Bm measurable;

(H4) g is locally Lipschitz continuous.

Let H : [a, b] × Rn × Rn × Rm → R denote the Unmaximized Hamiltonian function
H(t, x, p, u) := p · γ(t, x, u).
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Theorem 1.1 (Pontryagin Maximum Principle, see V. A. de Oliveira and G. N. Silva [2]).
If (x∗, u∗) is a weak Pareto optimal process of (MCP ), then there exist a scalar λ (equal
to 0 or 1), a nonzero vector ω ∈ Rk, and p ∈W 1,1([a, b],Rn) such that

(1) −p′(t) ∈ co {∂xH(t, x∗(t), p(t), u∗(t))} a.e. t ∈ [a, b],

(2) (p(a),−p(b)) ∈ λ∂(ω · g)(x∗(a), x∗(b)) +NS(x∗(a), x∗(b)),

(3) max
u∈U(t)

H(t, x∗(t), p(t), u) = H(t, x∗(t), p(t), u∗(t)) a.e. t ∈ [a, b],

(4) ‖p‖+ λ > 0, ‖ω‖ = 1, ω = 0.

Now, consider the space KC = {[a, a] | a, a ∈ R and a ≤ a}. Given A = [a, a], B =
[b, b], C = [c, c] ∈ KC and λ ∈ R, the interval arithmetic operations are defined by

A+B = [a, a] + [b, b] = [a+ b, a+ b], Aλ =

{
[aλ, aλ] ifλ ≥ 0

[aλ, aλ] ifλ < 0

and

A	gH B = C ⇔

{
A = B + C if len(B) ≤ len(A) or

B = A+ (−1)C if len(B) > len(A),

where len(D) denotes the length of an interval D = [d, d] ∈ KC , i.e., len(D) = d− d. The
gH−difference of two intervals always exists (see L. Stefanini and B. Bede, [6]) and

A	gH B =
[
min{a− b, a− b},max{a− b, a− b}

]
.

Definition 1.1 (See U. W. Kulish and W. L. Miranker, [3]). Let A = [a, a] and B =
[b, b] ∈ KC . The order relation lower and upper, LU in short, is defined by

1. A 5LU B if and only if a ≤ b and a ≤ b.

2. A ≤LU B if and only if A 5LU B and A 6= B, that is, either a < b and a ≤ b or
a ≤ b and a < b.

3. A <LU B if and only if a < b and a < b.

2 The Interval Optimal Control Problem (IOCP )

This work deals with the interval-valued optimal control problem posed as follows:
minimize G(x(b)) = [g(x(b)), g(x(b))]

subject to x′(t) = γ(t, x(t), u(t)) a.e. t ∈ [a, b],

(x(a), x(b)) ∈ {xa} × Rn = S,

u(t) ∈ U(t) a.e. t ∈ [a, b],

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0350 010350-3 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0350


4

where G : Rn → KC is given as G(x(b)) := [g(x(b)), g(x(b))] with g, g : Rn → R and
g(x(b)) ≤ g(x(b)) for all trajectories x, γ : [a, b] × Rn × Rm → Rn, S := {xa} × Rn is a
closed subset of Rn × Rn, U : [a, b]⇒ Rn, a and b are fixed.

The set of admissible controls Uad is given by

Uad = {u ∈M([a, b];Rm) |u(t) ∈ U(t) a.e. t ∈ [a, b]}.

The set of admissible trajectories Xad is given by:

Xad = {x ∈W 1,1([a, b];Rn) |x′(t) = γ(t, x(t), u(t)) a.e. t ∈ [a, b], (x(a), x(b)) ∈ S, u ∈ Uad}.

Therefore, the interval optimal control problem that will be considered, is

(IOCP )

{
minimize G(x(b)) = [g(x(b)), g(x(b))]

subject to (x, u) ∈ Xad × Uad.

From the order relation LU , it will be defined the optimal LU−processes for interval
optimal control problems.

Definition 2.1. Let (x∗, u∗) be an admissible process of (IOCP ), i.e., (x∗, u∗) ∈ Xad×Uad.

(i) (x∗, u∗) is an optimal LU−process of (IOCP ) if there exists no (x, u) ∈ Xad×Uad
such that G(x(b)) ≤LU G(x∗(b)).

(ii) (x∗, u∗) is a weak optimal LU−process of (IOCP ) if there exists no (x, u) ∈
Xad × Uad such that G(x(b)) <LU G(x∗(b)).

Hypothesis

The Hamilton function, H, for (IOCP) is exactly the one already defined for (MCP),
since the dynamics are the same.

Definition 2.2. Given S ⊆ Rn an open and nonempty set, let F : S → KC be an interval-
valued function.

(1) We say that F is Lipschitz continuous of rank K if we have that

dH(F (x), F (y)) ≤ K‖x− y‖ for all x, y ∈ S,

where dH is the Pompeiu-Hausdorff distance3 between F (x) and F (y) ∈ KC .

(2) We say that F is Lipschitz continuous locally near a given point x ∈ Rn of rank K
if for some ε > 0, we have

dH(F (y), F (z)) ≤ K‖y − z‖ for all y, z ∈ B(x, ε),

where B(x, ε) = {x′ ∈ Rn | ‖x− x′‖ < ε} denotes the open ball of center x and radius
ε in Rn.

3The Pompeiu-Hausdorff distance between A = [a, a] and B = [b, b] ∈ KC denoted as dH : KC ×KC →
[0,+∞) is given by dH(A,B) = max{|a− b|, |a− b|}.
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In [4], R. E. Moore, R. B. Kearfott and M. J. Cloud saw the last definition, but for
the case n = 1.

Proposition 2.1. Let S ⊆ Rn an open and nonempty set, let F : S → KC be an interval-
valued function such that F (x) = [f(x), f(x)], where f, f : S → R. Then F is Lipschitz

continuous if and only if the extreme functions f and f are Lipschitz continuous.

Proof. The proof is simple and will be omitted.

Let (x∗, u∗) be an admissible process of (IOCP ). As before, for some δ > 0, we are
going to suppose that γ and U satisfy (H1)− (H3) and also we are going to suppose that:

(H4)′ G is Lipschitz continuous locally.

3 Optimality Conditions for LU−processes
Necessary optimality conditions will be obtained, for optimal weak LU−processes of

the interval optimal control problem (IOCP ).

Theorem 3.1. If (x∗, u∗) is a weak optimal LU−process of (IOCP ), then (x∗, u∗) is a
weak Pareto optimal process of the following classical bi-objective optimal control problem:

(BCP )LU

{
minimize g(x(b)) = (g(x(b)), g(x(b)))

subject to (x, u) ∈ Xad × Uad.

Conversely, if (x∗, u∗) is a weak Pareto optimal process of (BCP )LU , then (x∗, u∗) is a
weak optimal LU−process of (IOCP ).

Proof. If (x∗, u∗) ∈ Xad × Uad is a weak Pareto optimal process of (BCP )LU , then there
exists no (x, u) ∈ Xad × Uad such that

g(x(b)) < g(x∗(b))

⇔ (g(x(b)), g(x(b))) < (g(x∗(b)), g(x∗(b)))

⇔ g(x(b)) < g(x∗(b)) and g(x(b)) < g(x∗(b))

⇔ [g(x(b)), g(x(b))] <LU [g(x∗(b)), g(x∗(b))]

⇔ G(x(b)) <LU G(x∗(b)),

which is the definition of weak LU−optimality for (x∗, u∗).

Theorem 3.2. If (x∗, u∗) ∈ Xad × Uad is a weak optimal LU−process of (IOCP ), then
there exist a multiplier p∗ ∈ W 1,1([a, b],Rn), a scalar λ∗ ∈ {0, 1}, and a nonzero vector
ω∗ = (ω∗1, ω

∗
2) ∈ R2, such that for almost every t ∈ [a, b],

(x∗)′(t) =
∂H
∂p

(t, x∗(t), p∗(t), u∗(t)),

− (p∗)′(t) ∈ co {∂xH(t, x∗(t), p∗(t), u∗(t))} ,

x∗(a) = xa and − p∗(b) ∈ λ∗ω∗1
∂g

∂x(b)
(x∗(b)) + λ∗ω∗2

∂g

∂x(b)
(x∗(b)).
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Furthermore, the control u∗ satisfies the following optimality condition for almost every
t ∈ [a, b]

H(t, x∗(t), p∗(t), u∗(t)) = max
u∈U(t)

H(t, x∗(t), p∗(t), u).

Proof. Since (x∗, u∗) is a weak optimal LU−process, by Theorem 3.1, (x∗, u∗) is also a
weak Pareto optimal process of (BCP )LU , so that by Theorem 1.1, there exist a scalar
λ∗ ∈ {0, 1}, a nonzero vector ω∗ = (ω∗1, ω

∗
2) ∈ R2 and p∗ ∈W 1,1([a, b],Rn), such that

(1) −(p∗)′(t) ∈ co {∂xH(t, x∗(t), p∗(t), u∗(t))} a.e. t ∈ [a, b].

(2) (p∗(a),−p∗(b)) ∈ λ∗∂(ω∗ · Ĝ)(x∗(a), x∗(b)) + NS(x∗(a), x∗(b)), where S = {xa} × R
and Ĝ : Rn × Rn → R2 is defined by

Ĝ(x(a), x(b)) := (g(x(b)), g(x(b))).

Since

ω∗ · Ĝ(x(a), x(b)) = (ω∗1, ω
∗
2) · (g(x(b)), g(x(b))) = ω∗1g(x(b)) + ω∗2g(x(b)),

we have that

∂(ω∗ · Ĝ)(x∗(a), x∗(b)) = {0} ×
[
ω∗1

∂g

∂x(b)
(x∗(b)) + ω∗2

∂g

∂x(b)
(x∗(b))

]
⊆ R2n,

and since (x∗, u∗) ∈ Xad × Uad is a weak optimal LU−process of (IOCP ), then
x∗(a) = xa and

NS(x∗(a), x∗(b)) = N{xa}×Rn(xa, x
∗(b)) = N{xa}(xa)×NRn(x∗(b)) = Rn × {0}.

Therefore,

(p∗(a),−p∗(b)) ∈ λ∗∂(ω∗ · Ĝ)(x∗(a), x∗(b)) +NS(x∗(a), x∗(b))

= λ∗
(
{0} ×

[
ω∗1

∂g

∂x(b)
(x∗(b)) + ω∗2

∂g

∂x(b)
(x∗(b))

])
+ Rn × {0}

= {0} ×
[
λ∗ω∗1

∂g

∂x(b)
(x∗(b)) + λ∗ω∗2

∂g

∂x(b)
(x∗(b))

]
+ Rn × {0}

= Rn ×
[
λ∗ω∗1

∂g

∂x(b)
(x∗(b)) + λ∗ω∗2

∂g

∂x(b)
(x∗(b))

]
.

Then:

p∗(a) ∈ Rn

and

−p∗(b) ∈ λ∗ω∗1
∂g

∂x(b)
(x∗(b)) + λ∗ω∗2

∂g

∂x(b)
(x∗(b)).

(3) max
u∈U(t)

H(t, x∗(t), p∗(t), u) = H(t, x∗(t), p∗(t), u∗(t)) a.e. t ∈ [a, b].
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(4) ‖p∗‖+ λ∗ > 0, ‖ω∗‖ = 1, ω∗ ≥ 0 .

Moreover, since H(t, x(t), p(t), u(t)) = p>(t)γ(t, x(t), u(t)),

∂H
∂p

(t, x∗(t), p∗(t), u∗(t)) = γ(t, x∗(t), u∗(t)) = (x∗)′(t).

4 Conclusion

We considered an interval optimal control problem and we used the partial order
relation LU for defining the optimal processes. Then, we presented a method to determine
the optimal LU−processes. Using the Lipschitz concept for interval-valued functions and
the Maximum Principle for classical multi-objective optimal control problems, we obtained
necessary optimality conditions for interval optimal control problems.
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