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Abstract. We consider d−dimensional PDEs of convention-diffusion type with at most
Hölder continuous coefficients. We construct an stochastic numerical method for the Monte
Carlo integration of this kind of equations. The proposed approach is based on the probabilis-
tic representation of this deterministic PDE through the solution of an associated stochastic
transport equation, which remarkably can be efficiently integrated without considering the
standard assumptions that typically are needed by convectional numerical integrators for
solving the underlying PDE. Results on the convergence of the proposed method and details
on its implementation are presented.
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1 Introduction

Many initial value problems for Partial Differential Equations (PDEs) that arise in ap-
plications usually contain rough, non-smooth coefficients defining the PDE. Consequently
the application of conventional numerical integrators for such equations does not make
any sense [8]. This is the case of the convection-diffusion equation in Rd

ut(t, x) + b(t, x) · ∇u(t, x)− 1

2
∆u(t, x) = 0 (1)

u(0, x) = f(x),

where b : [0 T ] × Rd → Rd is measurable, bounded and α−Hölder continuous in space
uniformly in time, for some α ∈ (0, 1).

Since convection-diffusion is an essential constituting part of useful practical models,
it has been extensively studied and much research has been carried out concerning the
numerical approximation of equation (1). In fact, it is well known that there are different
ways to discretize convection-diffusion equations e.g., by using finite element and finite
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difference methods including fully discrete schemes, Methods of lines, Rothe’s method,
Exponential Fitting, Meshless methods, IMEX methods, etc (see e.g., [10], [3]). However,
when the coefficient b in (1) is rough (for instance not differentiable or even continuous)
standard numerical integrators fails to work properly due to the assumptions requisite for
convergence are not satisfied [8]. That is why is necessary to resort to alternative methods
and mathematical tools for devising new integrators specially tailored for equation (1)
when there is a lack of regularity in the coefficient b.

The objective of this work is to construct a numerical integrator for the approximation
of the PDE (1) when b is not sufficiently smooth, in particular when b is only α−Hölder
continuous in space uniformly in time, for some α ∈ (0, 1). The approach we follows is
based on the probabilistic representation of this PDE through the solution of an associated
stochastic transport equation, which can be efficiently integrated via the solution of a suit-
able Random Differential Equations (RDE) without considering the standard assumptions
that typically are needed by conventional numerical integrators for solving the underlying
PDE.

The emergence of modern computing machines with ever higher speed and capacity
have contributed to a growing interest in stochastic approaches for deterministic PDEs. It
has played an important role in situations where using deterministic integrators become
ineffective due to huge volume of computations (for example, for d > 3) and when it is
desired to compute the values of the solution in only few points. In particular for equation
(1), the solution is given by [4]

u(t, x) = E

f (W (t)) exp

− t∫
0

b (W (s)) dW (s)− 1

2

t∫
0

|W (s)|2 ds

 ,

where E (X) stand for the expected value of the random variable X and W (s) is a
Wiener processes (often called Brownian motion). That is {W (t); t ≥ 0} is a random
processes with continuous path, defined by the properties: W (s) is Gaussian distributed
(i.e., W (s) ∼ N(0, t)), increments W (t) −W (s) ∼ N (0, t− s) , with 0 ≤ s ≤ t, and are
independent on non overlapping subintervals (i.e., for any 0 = t0 < t1 < · · · < tN ,
{W (ti)−W (ti−1); 1 ≤ i ≤ N} are independent random variables) and W (0) = 0 with
probability 1. The Itô stochastic integral is the mean-square (m.s) limit [1]

t∫
0

b (W (s)) dW (s) := (m.s) lim
N→∞

N−1∑
k=0

b (W (tk)) (W (tk+1)−W (tk)) ,

taken over partitions 0 = t0 < t1 < · · · < tN = t of the interval [0 t], with max
k=0,...,N−1

(tk+1−

tk)→ 0 as N →∞.
However, the proof of this representation is based on the Ito-Formula from stochastic

calculus -or alternatively in the classical Feynman-Kac Formula- (see e.g., [4]) and con-
sequently is valid under a set of smoothness hypothesis on the function b, that are not
fulfilled by (1). Even if it is proven in some other less restricted way that this representa-

tion is still valid to determinate u(t, x), the integral
t∫
0

|W (s)|2 ds needs to be computed by
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quadrature, for which is implicitly assumed that the function to be integrated (in this case
|W (s)|2) is smooth enough. This is a serious problem since the Wiener processes W (s) is
nowhere-differentiable almost surely [1]. The novelty of the present paper precisely consist
in devising a numerical integrator for (1) without very restrictive smoothness hypothesis.
Basically only assuming α−Hölder continuity of b.

The paper is organized as follows. In the next section a probabilistic representation
for the solution of the PDE is presented and a associated RDE is considered. Section 3
presents the deduction and convergence of the proposed method. Also, a detailed algorithm
concerning the implementation of the proposed method is described.

2 A Probabilistic Representation for the Equation (1)

2.1 Representation via an Stochastic Transport Equation

Let (Ω,F , (Ft) ,P) be a filtered probability space. Consider the stochastic transport
equation [2]

v(t, x) = f(x)−
∫ t

0
b(s, x) · ∇v(s, x)ds−

d∑
j=0

∫ t

0
∇v(s, x) ◦ dW j(s), (2)

where W (t) = (W 1 (t) , , ...,W d (t)) is a standard Ft-adapted d−dimensional Wiener pro-
cesses on (Ω,F , (Ft) ,P) and the stochastic differentials ◦dW j (t) are understood in the
Stratonovich sense [1].

Under the assumptions for b in the previous section, F. Flandoli et al., [5] proved that
the solution of (1) in (t, x) satisfies

u(t, x) = E (v(t, x)) .

On the other hand, the solution of (2) in (t, x) satisfies

v (t, x) = f(φ−10,t (x)), t ≥ 0 (3)

where the value φ−10,t (x) ∈ Rd is such that the solution of

dX(t) = b(t,X(t))dt+ dW (t)

X(0) = φ−10,t (x),

satisfies X(t) = x.

Thus,

u(t, x) = E (v(t, x)) = E
(
f(φ−10,t (x))

)
.

Consequently to find u(t, x) for given t > 0 and x ∈ Rd, all we need is to simulate

M independent copies
(
φ−10,t (x)

)[j]
of φ−10,t (x). In fact, when the Law of Large Numbers is
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applied to the sequence f(
(
φ−10,t (x)

)[j]
) the approximations u[M ](t, x) to u(t, x) are obtained

by:

u[M ](t, x) =
1

M

M∑
j=1

f(
(
φ−10,t (x)

)[j]
).

Note that u[M ](t, x) → u(t, x) as N → ∞, almost surely. This is the Monte Carlo
approximation to u(t, x) based on the representation (2)-(3). In practice one must ap-

proximate the
(
φ−10,t (x)

)[j]
. In that follows we will show how to do this.

2.2 Computing approximations to φ−10,t (x)

The key stone to approximate φ−10,t (x) is find a RDE having φ−10,t (x) as its solution. We

follow [2] to deduce this RDE. Let φ−1s,t (y) the value such that beginning with the initial

condition X(s) = φ−1s,t (y) the solution of

dX(t) = b(t,X(t))dt+ dW (t) (4)

X(0) = x.

in time t satisfies X(t) = y. Then, by using the properties of stochastic flows [9] we get

y = φ−1s,t (y) +

t∫
s

b(r, φ−1r,t (y))dr +

t∫
s

dW (r).

Hence φ−1s,t (y) satisfies the -backward in time- stochastic differential equation (SDE)

φ−1s,t (y) = y −
t∫

s

b(r, φ−1r,t (y))dr −
t∫

s

dW (r), s ∈ [0, t]

Let us now transform the final-value problem above into a forward-time problem.

For this, define R(s) = y(t− s), 0 ≤ s ≤ t, then

R(s) = x−
t∫

t−s

b(r,R(t− r))dr −
t∫

t−s

dW (r)

= x−
s∫

0

b(t− u,R(u))du− ξ(s;ω).

with ξ(s;ω) = W (t) − W (t− s), (here ω ∈ Ω is the realization corresponding to the
Brownian path)
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Because the process ξ(s;ω) is the difference between the Wiener process in two points,
R(s) is at most continuous but not differentiable in s. Hence, in order to handle this
equation, by defining

Z(s) = R(s) + ξ(s;ω)

it is obtained that Z(s) satisfies

Z(s) = x+

s∫
0

g(u, Z(u), ξ(u;ω))du,

where

g(u, Z(u), ξ(u;ω)) := −b(t− u, Z(u)− ξ(u;ω)).

Since the mapping u → g(u, Z(u), ξ(u;ω)) is continuous, the right-hand side of the
integral equation above is pathwise differentiable. Thus, Z(s) is an stochastic processes
on the interval [0, t] with continuously differentiable sample paths. In fact, Z(s) is solution
of the Random Differential Equation (RDE) (see, [2])

Z ′(s) = g(s, Z(s), ξ(s;ω)) (5)

Z(0) = x.

This is essentially an non-autonomous ODE for almost all realization ω ∈ Ω. For the sake
of simplicity, from now on we will work with ξ(s) i.e., without an explicit reference to the
realization ω.

Note that since we are interested in φ−10,t (x). From the equalities

φ−10,t (x) = y(0) = R(t) = Z(t)− ξ(t) = Z(t)−W (t),

we conclude that to compute v(t, x) by means of (3) all we need is to obtain the solution
of (5) in s = t.

In general, it is necessary to resort to numerical method to solve RDEs. The numerical
analysis of this kind of equations has not been as widely developed as for deterministic
differential equations and even as for SDEs. Nevertheless, in the last years some methods
have appeared in the literature for the numerical treatment of RDEs. We refer to [6] for
a recent review of the main integrators available.

3 The proposed integrator

Since to approximate u(t, x) = E (f(Z(t)−W (t))) will be required several copies of
the solution process to the RDE (5), we are interested in explicit and easy to implement
numerical schemes. In that follows we first consider a numerical method for (5) and then
we will propose the integrator for (1).
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3.1 A random Euler method

For Ordinary Differential Equations with only measurable vector field, the Carathéodory
Euler scheme is known to be a convergent method (see, [7] and Section 1.4 of [6]). We can
adapt this method to the RDE (5), resulting in a convergent method, as follows.

Let (τ)h : t0 < t1 < . . . < tN = t be a partition of the time interval [0, t] with,
for simplicity, equidistant stepsize h < 1, i.e., defined as a sequence of times such that
tn = t0 + nh, for n = 0, 1, . . . , N . Starting from the initial value x, the approximations
{Zi} to {Z (ti)}, (i = 1, 2, . . . , N) are obtained recursively by

Zn+1 = Zn − hb (t− tn − hRn, Zn − ξ(tn + hRn))

where Rn ∼ Uniform[0 1].

3.2 The definitive algorithm

Finally, the numerical integrator for computing the approximation to u(t, x) in (1) can
be algorithmically described as follows:

1. Set the step-size h = t
N (with N ∈ N), set Z0 = x, and set M ∈ N (for the Monte

Carlo simulations)

2. Repeat from j = 1 until j = M :

(a) From i = 0 until i = N − 1,

i. generate the Gaussian variable ηi ∼ N(0, 1)

ii. generate the Uniform random variable Ri ∼ Uniform[0 1]

iii. compute

Zi+1 = Zi − hb
(
t− ti − hRi, Zi −

√
ti + hRiηi)

)
(b) Compute v[j] = f

(
ZN −

√
tηN

)
with ηN ∼ N(0, 1)

3. Then, u
[M ]

(t, x) = 1
M

M∑
j=1

v[j] is the numerical approximation to u(t, x).

3.3 Convergence

Concerning the convergence of the proposed method, we have the following result.
Theorem: Let u (t, x) be the solution to the convection-diffusion PDE (1), with b

measurable, locally Lipschitz in the second argument and α−Hölder continuous in space
uniformly in time, for some α ∈ (0, 1). Let h < 1 and M ∈ N with M > 1

h . Then,

u
[M ]

(t, x) is almost surely convergent to u (t, x) and we have that∣∣∣u (t, x)− u[M ]
(t, x)

∣∣∣ = O(h
1
2 ), almost surely
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4 Conclusions

In this work we propose an explicit probabilistic numerical integrator for the integration
of the deterministic convection-diffusion PDE (1), with non-smooth coefficient b. The
strategy consisted in representing the solution of the PDE through the expectation of
the solution of an associated stochastic transport equation which in turn was solved by
a random Euler scheme. In contrast with other kind of stochastic representation for (1),
our proposal allows to integrate a more wide class of convection-diffusion PDEs without
considering the standard assumptions that are needed for instance in representations based
on the Feynman-Kac formulas. We point out that the this approach could be adapted to
devising layer methods for some nonlinear convection-diffusion PDEs.
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