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Abstract: This paper presents preliminaries results for the resource allocation problem framed
in a joined manufacturing, product engineering, and service environment. Such networks are
represented as queueing networks. The performance of the queueing networks is evaluated using
an advanced queueing network analyzer, the generalized expansion method (GEM). Secondly,
different model approaches are described and optimized with regards to the key parameters in the
network, namely the buffer and server sizes.
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1 Introduction

The resource allocation problem has been the focus of numerous studies for decades. The focus
here is on problems modeled as queueing networks [16]. This paper presents performance eval-
uation and optimization approaches from a queueing theory point of view!. More specifically,
finite buffer queueing networks are characterized by blocking that eventually degrades the per-
formance, commonly measured via e.g. the throughput of the network. Following Simchi-Levi
et al. [11], we adopt the same approach as in Figure 1. Clearly, the development chain (prod-
uct engineering) and the supply chain (product manufacturing) are interacting with the service
network. In this paper, we focus on the service step as it will be important to consider its role,
its characteristics and the consequences in the product engineering phase.

The paper is structured as follows. In Section 2, we present the problem formulation, the
performance evaluation method considered for the queueing networks, which is generalized ex-
pansion (GEM) method, and we elaborate on the optimization tools that are used to optimize
the models. Section 3 gives for a complex network the results for some selected optimization
models. The last Section 4 concludes the paper and gives some pointers for future research in
the area.

!Queueing theory is the mathematical study of waiting lines and enables the mathematical analysis of several
related processes, including arrivals at the queue, waiting in the queue, and being served by the server. The
theory enables the derivation and calculation of several performance measures which can be used to evaluate the
performance of the queueing system under study.
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Figure 1: The development chain versus the supply chain

2 Problem Formulation and Resolution Method

2.1 Mathematical Programming Formulation

Given a network structure G(V, A) characterized by Poisson arrivals, |V | nodes with non-negative
buffers, multiple servers, a general service distribution and interconnected with arcs A, we
can optimize on the number of buffers or the number of servers used in each vertex V;, the
characteristics of the service distribution (e.g. the service rates and the variability), on the
routings used on the arcs A or any combination of these possible decision variables. In general,
we can write the generic optimization model as follows:

Z = min f(X), (1)

subject to:
0X) > o, (2)
X > 0, (3)

that minimizes the total allocation f(X) = >;cy X; (i.e. over all nodes i € V'), constrained to
provide at least the minimumm required throughput of ©7. A number of specific models can be
specified based on the above generic model:

e When we set X = B, the buffer allocation problem (BAP) appears. One extra constraint
needs to be added to reflect the integrality condition, that is, B; € N,Vi € V. The
objective function is then

Zpap =min »_ B;. (4)
i€V
This is a model formulation discussed in details by Smith et al. [15].

e The server allocation problem (CAP) appears if we have X = c¢. Again, an extra integrality
constraint is needed, that is ¢; € N,Vi € V. The objective function is then

ZcAp = min Z . (5)
%

See the paper by Smith et al. [14] for more information.
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e Combining the server and buffer allocation problems by setting X = (B, c) results in the
joint buffer and server allocation problem (BCAP). In this case, the integrality constraints
are B; € N,¢; € N,Vi € V. Next to this integrality constraint, one more constraint is
needed. It is necessary to ensure that there is at least one server per vertex, ¢; > 1,Vi € V.
Note that buffers can be equal to zero, hence having a zero-buffer system. Secondly, note
that the objective function needs to be adapted slightly to take into account the two
objectives (i.e. buffers and servers). We consider two options to rewrite the objective
function depending on how to deal with the multi-objective issue.

— First, the objective function can be written as a weighted sum of the two objectives:

ZBCAP1 :mianCi—f—(l _W)ZBi- (6)
i€V eV

We assign a cost of w to servers and (1 —w) to buffers. We can then modify the value
of w, such that 0 < w < 1, to reflect the relative cost of servers versus buffers. As w is
decreased, the cost of servers will become relatively lower than that of buffers. That
is, buffers are then more expensive than servers. Alternatively, when the value of w
is increased, the servers become more costly relative to the buffers and therefore the
servers become more expensive than the buffers. In this way, we evaluate whether
different pricing of servers and buffers results in a significantly different buffer and
server allocation. It is worthwhile to mention that if w = 0, the above problem
reduces to the pure buffer allocation problem and if w = 1, the pure server allocation
problem is obtained.

— Secondly, the objective function can formulated in a multi-criteria way:

Zncaps = min { fi(c), f2(B)}, (7)

in which each objective is considered explicitly. Consequently, one obtains an approx-
imation of the Pareto set of solutions for the two objectives. As such, this perspective
is more general than the first objective function formulation. A discussion on this
multiobjective formulation can be found in the paper by van Woensel et al. [17], Cruz
et al. [3, 4].

2.2 Network Performance Evaluation

In general, we evaluate the performance of the network via its throughput #. This throughput
(and all other measures) can be obtained via a queueing network representation. This queueing
network representation? then needs to be ’solved’ to obtain the performance of the given network.

The Generalized Expansion Method (GEM) transforms the queueing network into an equiv-
alent Jackson network, which can be decomposed so that each node can be solved independently
of each other (similar to a product form solution approach). The GEM is an effective and ro-
bust approximation technique to measure the performance of open finite queueing networks.
The effectiveness of GEM as a performance evaluation tool has been presented in many papers,
including Kerbache and Smith [7, 8, 9], Jain and Smith [6], Smith [12], and Andriansyah et al.
[2]. The GEM uses blocking after service (BAS), which is prevalent in most production and
manufacturing, transportation, and other similar systems. Developed by Kerbache and Smith
[7], the GEM has become an appealing approximation technique for performance evaluation
of queueing networks due to its accuracy and relative simplicity. Moreover, exact solutions to
performance measurement are restricted only to very simple networks and simulation requires a
considerable amount of time.

2In order to refer to the queueing models, we use Kendall’s notation, in which M/G/1/K means a queueing
system with Markovian arrival rates, General service times, 1 server in the node and K capacity of the node
(including the server).
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2.3 Optimization Methodologies

While the GEM computes the performance measures for the queueing network, many of the
above discussed models need to be optimized on the decision variables defined in X. Note that
there, of course, exist many optimization methods. An exhaustive discussion is left out of this
paper, but the interested reader is referred to Aarts and Lenstra [1] and the references therein.
We describe a methodology which has proven to be successful for the above described models,
the Powell algorithm. Of course, small problems can always be enumerated.

The Powell algorithm can be described as an unconstrained optimization procedure that
does not require the calculation of first derivatives of the function. Numerical examples have
shown that the method is capable of minimizing a function with up to twenty variables (see
Powell [10] and Himmelblau [5]). Powell’s method locates the minimum of f(x) of a non-linear
function by successive unidimensional searches from an initial starting point x(©) along a set
of conjugate directions. These conjugate directions are generated within the procedure itself.
Powell’s method is based on the idea that if a minimum of a non-linear function f(x) is found
along p conjugate directions in a stage of the search, and an appropriate step is made in each
direction, the overall step from the beginning to the pt* step is conjugate to all of the p sub-
directions of the search.

3 Results

In this section, we will focus on one example network and describe the results for some of the
different optimization models discussed above. We consider a combination of the three basic
topologies (series, split and merge), as shown in Figure 2. This network consist of 16 nodes with
the processing rate of servers in each node given in the figure. The network is adopted from
Smith and Cruz [13]. We use exactly the same values for A, y, s2, and routing probabilities for
the splitting node (#1 and #2). Note that the routing probability #1 refers to the up tier of
the node, while #2 refers to the low tier. Refer to Figure 2 for the position of each node in the
network.

Figure 2: Combined topology

3.1 The Buffer Allocation (BAP)

We reproduce in Table 1 the results for the BAP, Equation (4), taken from Smith and Cruz [13],
for this network structure, with A = 5 and the routing probabilities equal to 0.5 (Table 29 in
their paper). The results are in Table 1. Note that they considered an M/G/1/K setting and
therefore the number of servers in all nodes is set to 1 while optimizing on the buffer allocation.
Based on the table, we see that the first node (most congested) is receiving more buffers to cope
with the relatively high arrival rate.
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Table 1: Results for the BAP (taken from Smith and Cruz [13])

52 c B Zic,‘ ZiBi 0(c,B)
0.5 (1111111111111111) (8444444444444445) 16 69 4.9899
1.0 (1111111111111111) (10555544444444555) 16 T 4.9879
1.5 (1111111111111111) (11555555555555556) 16 87 4.9877

3.2 The Server Allocation (CAP)

Let us now fix the number of buffers beforehand and then optimize on the number of servers
used, the CAP, Equation (5). More specifically, we set all buffers equal to 1 and look at the
resulting server allocation (Table 2). Interestingly, we observe the same behavior as for the buffer
allocation. The first node is receiving more resources than the remaining nodes. On the other
hand, the number of servers added is relatively low compared to the buffers added (5 versus 8).
This is because a server is also acting as a buffer, but a server adds more value, measured in
throughput.

Table 2: Results for the CAP

s c B ¢ >..Bi 0(c,B)  Za
05 (5222222222222222) (1111111111111111) 34 16 4.9997  35.29
10 (5222222222222222) (1111111111111111) 36 16 4.9996  35.33
15 (5222222222222222) (1111111111111111) 34 16 4.9996  35.37

4 Conclusions and Future Directions

In this paper we have reviewed some of the most important models for resource allocation from
a queueing point of view. We discussed the merits of the GEM, as a performance evaluation
tool of the finite queueing networks, and the Powell method, as an heuristic optimization tool.
The paper also presented results for a complex queueing network. We saw that the BAP and
CAP give different results in terms of number of servers versus number of buffers used. It is
clear that in this case, the first added buffer or first added server gives the largest contribution
to the throughput value, which is limited by the arrival rate A. Note that the addition of the
first extra server, gives a certain amount of increase in throughput, while the first added buffer
gives a smaller increase. Important to mention is that, in order to achieve the same increase in
throughput by only using buffers, we need more extra buffer spaces, rather than only one server
space.

We have not considered here but the throughput as the main performance measure. Instead
of the throughput, it would be interesting to evaluate the behavior of the models based on cycle
time, the work-in-process (WIP )or other performance measures. Topics for future research on
the area include the analysis and optimization of networks with cycles, e.g., to model many
important industrial systems that have loops, such as systems with captive pallets and fixtures
or reverse streams of products due to re-work, or even the extension to GI/G/c/c queueing
networks, i.e. including generally distributed and independent arrivals.
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