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Resumo. Metamaterials, or locally resonant metamaterials, are a class of structures that
have been used to control and to manipulate acoustic and elastic waves with applications in
vibration attenuation. A great amount of research has been done on acoustic and structural
metamaterials but very few attention has been given to the effects of coupling conditions
on structural assemblies, even though this is typical case on mechanical engineering applica-
tions. In this work, the wave attenuation in a metamaterial beam assembly is investigated
considering uncertain connections. A beam, with attached resonators, undergoing longitu-
dinal and flexural vibration is connected to homogeneous beams at each end. It is assumed
a large enough number of identical resonators such that effective longitudinal and flexural
wavenumbers are derived. Wave modes are assumed unchanged by the attachments and an-
alytical expressions can be derived. A point connection is considered with an assembly angle
such that wave mode conversion, between flexural and longitudinal waves, can happen. The
reflection and transmission properties of the assemble are then calculated and it is shown
that the angle of the assembly has a significant effect on the band gap performance. The
uncertainty analysis focus on the variability of the connection angles and ensemble statistics
are investigated.
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1 Introduction

Metamaterials, or locally resonant metamaterials, are a class of structures that have
been used to control and to manipulate acoustic and elastic waves [6] with applications
in vibration attenuation [5]. Although periodicity of the resonators positioning is not
required, it is used for a cell-based description of the wave propagation. In metamaterials.,
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the attenuation effect is created due to inclusions or attachments that work as internal
resonators [7] and are able to create band gaps at sub-wavelength frequencies, unlike the
phononic crystals, which rely on spatial periodicity and the Bragg scattering effect [6].

In this work, the wave attenuation from a metamaterial beam assembly is investigated
considering parametric uncertainties. A metamaterial beam undergoing longitudinal and
flexural vibration is considered and it is connected to a simple bare beam at each end.
A point connection is considered with a angle such that wave mode conversion between
flexural and longitudinal waves can happen. The scattering properties of the assemble
can then be calculated and it is shown that the angle of the assembly has a significant
effect on the band gap performance. The uncertainty analysis focus on the variability of
the connection angles and ensemble statistics are investigated. Two cases are considered,
one which only one connection angle is uncertain and other which both angles are uncer-
tain. For each case, two probabilistic models are assumed and it is shown that the choice
stochastic model increases the variability of the results. It is shown that introducing con-
nection angles between the metamaterial and the host structure can significantly increases
the attenuation performance due to the wave mode conversion at the joints. Moreover,
the choice of sets of random variable played a much more important role in the results
than the probabilistic models for the random variables.

1.1 Wave model

The equation of motion of a continuous system with S periodically attached resonators
can be given in the general form by [8]

L(x)w(x, t) + µẅ(x, t)−
S∑

p=1

kpup(t)δ(x− xp) = p(x, t), (1)

and one additional equation for each resonator mpüp(t) + kpup(t) +mpẅ(xp, t) = 0, where
up(t) is the displacement of each resonator attached at xp, with mass mp and stiffness kp
and δ(x) is the Dirac delta function. This expression was originally proposed for a modal
analysis in metastructures and allows the derivation of closed form expression for the
band gap frequency edges. In this work, it will be used for finding the dispersion equation.
Also, assuming that the wave modes are unchanged due to the resonators attachments,
it provides a analytical framework for calculating reflection and transmission coefficients.
Assuming identical resonators and a large enough number of attachments, it can be shown
that

L(−ik)− µω2

(
1 + ε

1

1− Ω2
r

)
= 0, (2)

where Ωr = ω/ωr and ω2
r = kp/mp and ε = mp/µ∆l is the mass ratio for resonators spaced

by ∆l. The suitable stiffness operators can be applied to find the effective wavenumbers
for longitudinal and flexural waves
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(
1 + ε

1

1− Ω2
r

)√
ω. (3)

This result is equivalent to [3] for a continuous neutralizer attached to the beam,
in which the mass ratio is given in terms of wave length. Assuming that the attached
resonators do not change the wave types, these wavenumbers can then be used to describe
the displacement field the same as for the simple beam.

1.2 Metamaterial assembly

A metamaterial beam undergoing longitudinal and flexural waves is connected to two
other homogeneous beam, one at each end, as shown in Fig. 1. At the left end, the
connection angle is α1, b±

1 are the amplitude of the incoming and outgoing waves. At the
right end, the connection angle is α2, a±1 are the amplitude of the outgoing and incoming
waves. A scattering matrix can be defined relating the incoming and outgoing waves of
the assembly by [2, 4] [

a+
2

b−
1

]
=

[
r+ t+

t− r−

] [
a−2
b+

1

]
, (4)

where r± are reflection matrices and t± are transmission matrices. They can be obtained
from the equilibrium and continuity conditions at the beams connections and the wave
propagation along the metamaterial beam. Assuming a−2 = 0, i.e., a incident wave on the
left end only, then the scattering simplifies to a+

2 = t+b+
1 and b−

1 = r−b+
1 . Therefore,

the transmission coefficient t+ can be used as to access the vibration attenuation of the
metamaterial beam in the assembly.

Figure 1: Metamaterial beam assembly with one semi-infinite homogeneous beam at each
end undergoing longitudinal and flexural vibration.

In this case, the reflection and transmission matrices are size 3× 3 and relate the lon-
gitudinal, propagating flexural and non-propagating flexural (near field) wave amplitudes
at the both sides of the assembly. For α1 = α2 = 0, i.e., a straight assembly, no wave
mode conversion is expected and these matrices are diagonal. However, for α1 6= 0 and
α2 6= 0, they are full matrices and wave mode conversion plays a role on the metamaterial
vibration attenuation performance. Moreover, asymmetries in the assembly can be given
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by differences in the connection angle, i.e. α1 6= α2, and also play a role on the reflection
coefficients r±, while t+ = t− due to reciprocity.

2 Probabilistic modelling

Two cases are considered in the analysis. In the first, it defined that the first connection
angle α1 is fixed while α2 = α1 + θ, where θ is a sample of the random variable Θ. In the
second case, it is considered that both connection angles α1 and α2 can be modelled by
the random variables A1 and A2, respectively. For each analysis case, a probabilistic model
is defined. The probability distribution of the random variables have to take in to account
physical constrains of the problem. Typically, manufacturing processes can only guarantee
minimum θ1 and maximum θ2 values from the tolerances in the assembly process. It is
also reasonable to assume that the angles in both connections are not correlated. Given
the lack of any additional information, it is reasonable to assumed a the uniform PDF, i.e.

f
(1)
Θ,A1,A2

(x) =
1

θ2 − θ1
, θ1 ≤ x ≤ θ2, (5)

where θ1 and θ2 are the lower and the upper limits of the random variable Θ.

3 Numerical results

In this section, numerical results are presented considering the metamaterial beam
assembly. All of the beams with and without resonators are composed of polyamide,
whose mechanical properties are described in [1]. The metamaterial beam is 20 cm long
and the resonators have a flexural natural frequency at 900 Hz and longitudinal natural
frequency at 1300 Hz. Figure 2 presents the real and imaginary part of the longitudinal
and flexural wavenumber for the bare beam and the absolute value of the transmission
coefficient, considering α1 = α2 = 0, i.e., a straight assembly. For a lossless waveguide, the
wavenumber can be real, leading to a propagating wave, imaginary, giving a decaying or
evanescent wave, or complex, which has both behaviours, i.e. propagating and decaying.
The imaginary part of the dispersion curve (negative values) shows the frequency band in
which there is vibration attenuation for each wave mode, i.e. the band gap for longitudinal
and flexural waves. Note that the wave types do not interact because the axial and flexural
vibration are considered uncoupled at the metamaterial beam. This is also noticed in the
absolute value of the transmission coefficient, which shows a very low transmission at the
band gap frequencies for each individual wave mode. Additionally, from the dispersion
curve it can be seen that the group velocity cg = ∂ω/∂k, that gives the velocity of energy
transport, is zero at the resonator frequency and it is negative at the band gap.

The effects of uncertainties on α1 and α2 at the wave mode conversion and the band gap
performance are also investigated. For both considered cases, i.e. models with random
variables Θ and A1 and A2, the probabilistic model considered that α1 = α2 = 0, with
θ1 = −π/10 and θ2 = π/10. For the stochastic analysis, 1000 MC samples are used which
is enough for convergence.
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Figure 2: (left axis) Real and imaginary parts of the longitudinal (red) and flexural (black)
wavenumbers (solid line) for the bare beam and metamaterial beam and (right axis) ab-
solute value of the transmission coefficient (dashed line) considering α1 = α2 = 0.

Figure 3: Mean (yellow), nominal (cyan) value and MC samples of the absolute value of
the transmission coefficient considering α1 = α2 = 0 and Θ. Uniform PDF.

Figures 3 and 4 present the mean, nominal value and MC samples of the absolute
value of the transmission coefficient obtained. It can be noticed that the mean value and
the nominal response are not equivalent in all of the frequency band but at the band gap
regions for each longitudinal or flexural wave modes. Therefore, the deterministic analysis
is not representative of the typical behaviour of the transmission coefficient outside of this
regions. In fact, the results show that the nominal response gives the upper bounds of
the MC samples outside the band gap regions in both cases, while it is representative of
the mean response in the band gap regions. The nominal model cannot capture the wave
mode conversion occurring due to the random variation of the connection angles and it
cannot predict the improved attenuation features observed in these cases. Moreover, the
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Figure 4: Mean (yellow), nominal (cyan) value and MC samples of the absolute value of
the transmission coefficient considering the random variable of both connection angles, A1

and A2. Uniform PDF.

choice of sets of random variable played a much more important role in the results than
the probabilistic models for the random variables. Note that changing from uniform to
a truncated Gaussian slightly affects the mean values and the tails of the distribution of
the results. The model considering both connection angles and uncertainty introduced
qualitative changes on the response, with frequency bands with increased attenuation
performance. This is because the wave mode conversion between longitudinal and flexural
waves could occur at both connections.

4 Concluding remarks

The wave attenuation performance of a metamaterial beam assembly is investigated
considering uncertain connections. It is assumed a large enough number of identical res-
onators such that and effective longitudinal and flexural wavenumbers are derived. Wave
modes are assumed unchanged by the attachments and then analytical expressions can
be derived. The reflection and transmission properties of the assembly are be calculated
and it is shown that the angle of the assembly has a significant effect on the band gap
performance.

The uncertainty analysis focus on the variability of the connection angles and ensemble
statistics are investigated. Monte Carlo sampling is used as the stochastic solver. It is
shown that the deterministic analysis is not representative of the typical behaviour of the
transmission coefficient outside the band gap region. In this case, the nominal response
gives the upper bounds of the MC samples outside the band gap regions in both cases,
while it is representative of the mean response in the band gap regions.

Most importantly, it is shown that the nominal model, which does not include vari-
ability in the connections, cannot capture the wave mode conversion occurring due to
the randomness of the connection angles and it cannot predict the improved attenuation
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features observed in these cases. Moreover, the choice of sets of random variable played
a much more important role in the results than the probabilistic models for the random
variables.
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