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Abstract. The aim of this work is to obtain the mass fraction of the species involved
in a two step mechanism for a biodiesel surrogate, methyl butanoate (MB). For this, the
solution for the one-step and two-step models was used and the flow equations were solved.
The equations were discretized by the finite difference method and were integrated by the
Simplified Runge-Kutta method. The results obtained agree with data from the literature.
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1 Introduction

Biofuels are solid, liquid or gaseous fuels that are produced from starch, sugar, oil and
raw materials obtained through the cultivation of wheat, corn, sugar cane, among others
[13]. Biofuels are produced from biomass and waste materials from the food industry,
forestry, etc. They include: bioethanol derived from lignocellulose, biodiesel obtained by
refining used vegetable oils, etc.

Biodiesel can be reasonably represented by simpler surrogate fuels that are of the same
ester class [3, 7]. For example, MB (C5H10O2) contains the essential chemical structure
of large chain fatty acids, and is a reasonable surrogate for flames of biodiesel at high
temperatures.

Models of reactive flowns using Computational Fluid Dynamics (CFD) equations are
complex [10]. The mathematical formulation of CFD consists of coupled nonlinear partial
differential equations such as: continuity, momentum and mixture fraction, which can be
discretized using, e.g., methods as finite differences and finite elements [6, 8].
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The aim of this work is to model the mass fraction of the biofuel surrogate, MB, for
one and two-step mechanism and solve the flow equations. The solution of these equations
is approximated by the Simplified Runge-Kutta method.

2 Model formulation

2.1 Burke-Schumann solution

Diffusion flames can be described by the conservative scalar Z, which represents the
mixture fraction. The mass fraction of the unburned fuel is YF,u = YF,1Z, where YF,1
is the mass fraction of the fuel in the initial stream. Since (1 − Z) represents the mass
fraction of the oxidant, we can also write YO2,u = YO2,2(1 − Z), where YO2,u is the mass
fraction of the unburnt oxidant and YO2,2 is its mass fraction.

Considering the global one-step reaction [11,12]

νF [F ] + νO2 [O2] 
 νCO2 [CO2] + νH2O[H2O], (1)

where νi is the stoichiometric coefficient of the species i, we have that the relation between

the mass fractions of the fuel and the oxidant is given by
dYi1
νi1Wi1

=
dYi2
νi2Wi2

, where Wi

represents the molecular weight of the species i.
Integrating the last equation, with the subscripts i1 = F and i2 = O2, between the

initial unburnt state and another posterior state, we have
YF−YF,u

νFWF
=

YO2
−YO2,u

νO2
WO2

. Then

νYF − YO2 = νYF,u − YO2,u, (2)

where ν =
νO2

WO2
νFWF

is the stoichiometric ratio.

From equation (2), we write the mixture fraction Z =
νYF−YO2

+YO2,2

νYF,1+YO2,2
. For a stoi-

chiometric mixture, νYF = YO2 . Then the stoichiometric mixture fraction is given by

Zst =

(
1− ν YF,1

YO2,2

)−1
.

The solution of the global one-step mechanism can be approximated by the Burke-
Schumann solution, which describes the mass fraction of the species involved in the reaction
with respect to the mixture fraction Z [2]. For Z ≤ Zst, combustion ends when all fuel is
consumed and the misture fraction result in:

YF,b = 0;

YO2,b = YO2,u

(
1− Z

Zst

)
;

YCO2,b = YCO2,st
Z

Zst
;

YH2O,b = YH2O,st
Z

Zst
.

(3)

For Z > Zst, the combustion is complete when all oxygen is consumed and the equa-
tions result in:
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

YF,b = YF,1

(
Z − Zst
1− Zst

)
;

YO2,b = 0;

YCO2,b = YCO2,st

(
1− Z

1− Zst

)
;

YH2O,b = YH2O,st

(
1− Z

1− Zst

)
;

(4)

where YCO2,st =
νCO2WCO2

νFWF
YF,1Zst and YH2O,st =

νH2OWH2O

νFWF
YF,1Zst.

In a mechanism of more than one step, we write the mixture fraction in the form:
Z = Z1 +Z2 + · · ·+Zn, where n are the components. In terms of the mass fraction of the
species [1], we have:

Z1 =
YF
YF,1

; Zk =
νFWF

νkWk

Yk
YF,1

; k = 2, · · · , n; (5)

so that when we replace (5) in the mass fraction equation of the species

ρ
∂Yk
∂t

+ ρ~u · ~∇Yk = ~∇ · (ρD~∇Yk)± ω̇k ; k = 1, · · · , n; (6)

we obtain

ρ
∂Zk
∂t

+ ρ~u · ~∇Zk = ~∇ · (ρD~∇Zk)± ω̇k ; k = 1, · · · , n. (7)

Adding the n equations in (7) gives the equation of the mixture fraction described in
(8). The solution of the set of n equations is obtained numerically.

2.2 Flow equations

In order to formulate the system of equations that model the flow of a free jet, we
consider the following hypotheses: i) the flow is two-dimensional and laminar; ii) the flow
regime is permanent and the fluid is incompressible; iii) field forces are negligible.

The flow will be described by the dimensionless equations of continuity, momentum,
pressure and mixture fraction [5]:

∇ · ~u = 0;
∂~u

∂t
+ ~u · ~∇~u = −1

ρ
~∇p+

1

Re
∇2~u;

∇2p = 2

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
;

∂Z

∂t
+ ~u · ~∇Z =

1

ReSc
∇2Z;

(8)

where Re = uL
ν is the Reynolds number, which determines the fluid flow regime, Sc = ν

D
is the Schmidt number, which relates the viscosity and the mass diffusivity of the fluid.
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Considering the domain Ω = {(x, y) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 0.1}, the initial and
boundary conditions are given by:

~u = (u, v) = (1, 0), p = Z = 1, for t = 0, ∀Ω;

u = Z =

{
1, if 0.045 ≤ x ≤ 0.055
0, otherwise

, v = ∂p
∂x = 0, for (0, y) ∈ Ω;

u = v = Z = ∂p
∂x = 0, for (x, 0) ∈ Ω;

u = v = Z = ∂p
∂y = 0, for (x, 0.1) ∈ Ω;

∂u
∂x = ∂v

∂x = ∂Z
∂x = 0, p = 1, for (1, y) ∈ Ω.

(9)

2.3 Numerical formulation

The Simplified Runge-Kutta method [1] is used because of the small number of op-
erations required. The coefficients of the method were chosen to obtain a solution with

high temporal precision. For the system of differential equations ∂ ~W
∂t = −~R, the Simplified

Runge-Kutta method is: 
~W

(0)
(i,j) = ~W

(n)
(i,j);

~W
(k)
(i,j) = ~W

(0)
(i,j) − αr∆t ~R

(k−1)
(i,j) ;

~W
(n+1)
(i,j) = ~W

(k)
(i,j);

(10)

where ~R is the vector representing the system of equations evaluated at points (i, j) of
the domain, in stage k, k = 1, . . . , n; ~W contains the variables of interest of the problem;
∆t is the time step and αr are the coefficients of the method. For second order temporal
approximation with 3 stages, we take α1 = α2 = 0.5 and α3 = 1.

3 Numerical results

The equations of the flow were discretized using the finite difference method, in which
one replaces the derivates of the differential equations by approximations involving only
numerical values [4,14]. Consider a jet as shown in Figure 1, in the domain Ω, whose nozzle
diameter is d ' 0.01. A non-uniform mesh was used, refined on Ω at the beginning and
centerline of the jet, with 151x51 points. The dimensionless numbers taken were Re = 2400
and Sc = 0.5. The Simplified Runge-Kutta method was applied using ∆t = 10−6, from
which numerical data for the laminar diffusion flame mixture fraction were obtained.

Figure 1 shows the isolines of mixture fraction for a laminar jet diffusion flame of MB.
A numerical result of mass fractions for MB diffusion flame can be obtained from the

global two-step mechanism:

[C5H10O2] + 4[O2] 
 5[CO] + 5[H2O]; (11)

[CO] +
1

2
[O2] 
 5[CO2]. (12)

Figure 2 shows the mass fraction as a function of the mixture fraction of the species
of the laminar jet diffusion flame in the centerline of the jet. The maximum values for the
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Figure 1: Isolines of the mixture fraction for diffusion flame of MB.

H2O, CO2 and CO species in the stoichiometric mixture fraction (Zst ∼= 0.1025) are the
ideal conditions for burning.

Figure 2: Mass fraction of the species along the centerline of the jet along Z.

The truncation error of the mixture fraction equation, for infinity norm is given by:

eN∞ = max
i=1,...,Np

|eNi |, (13)

where eNi is the mixture fraction difference in the iteration N and N − 1, for N = 2,3,..,
and Np is the number of points of the mesh. The results shown in Table 1 indicate the
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increase in accuracy of the Simplified Runge-Kutta method for the mixture fraction in the
infinite norm.

Table 1: Error for mixture fraction equation.

Iteration Error Error (E∞)

500000 1.8139601358664603E-007
1000000 3.5497390957206498E-008
1500000 2.8048385565526690E-008
2000000 1.6826276684478447E-008
2500000 9.1952749303736425E-009
3000000 4.8239832250301928E-009
4000000 1.2876340206753600E-009
5000000 3.6559603998689849E-010
6000000 1.1934498354848611E-010

4 Conclusion

In this work, we model a jet diffusion flame of methyl butanoate using a two-step
mechanism to determine the mass fraction of the species with respect to the mixture
fraction, given through the flow equations. The Burke-Schumann solution is used for the
solution of the one step model. The numerical solution of the two step model and flow
equations was obtained using the Simplified Runge-Kutta method and the convergence is
shown in Table 1.

According to [9, 15], the results obtained for the mass fractions of MB, O2, CO, CO2

and H2O are coherent.
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