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Abstract. The purpose of this paper is to derive efficient and robust a posteriori error
estimations for the enriched mixed methods proposed in [2, 4]. The general methodology
is based on potential and flux reconstruction [6]. In the context of mixed methods for
Poisson’s problems only potential reconstruction is required since an equilibrated flux is
already given by the method. The proposed scheme for potential reconstruction follows
three main steps: solution of the problem using an enriched space configuration for flux and
potential variables (no post processing is required), smoothing of the potential variable and
solution of local Dirichlet problems with hybridization. Results of some verification tests
are presented illustrating the performance of the scheme.
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1 Introduction

In the context of finite element methods for partial differential equations, it is possible
to consider a priori and a posteriori error analyses. A priori error estimates give bounds to
approximation errors of the variables involved depending on regularity assumptions on the
exact solution and on the approximation solution. A posteriori error estimates is based
only in the approximate solution and the data of the problem, therefore, this approach is
useful for efficient error control of the numerical simulations, in pratical problems where
the real solution is unknown.

In this context consider the model problem

∇ · (−K∇u) = f, on Ω, (1)

u = 0, on ∂Ω, (2)

defined in a polygonal region Ω ⊂ Rd, d = 2, 3, where K is a symmetric, bounded, and
uniformly positive definite tensor, and f ∈ L2(Ω).
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The weak form for the problem (1)-(2) can be read as,

(K∇u,∇v)Ω = (f, v), ∀v ∈ H1
0 (Ω). (3)

Let Th = {K} be a partition of Ω into non-overlapping elements K, such that the
nonempty intersection of a distintic pair of elements is a single common node or single
common edge. The term h refers to the maximum diameter hK of the elements K.

It is known that the approximate solutions uh for problem (3), obtained by finite
element spaces based on the partition Th, may be continuous (e.g. for H1-conforming
variational formulations), or discontinuous (e.g. for DG, hybrid or mixed formulations). It
is possible to consider discretizations whose flux approximations is not H(div)-conforming.
Thus, at the approximation level, it is possible that uh /∈ H1

0 (Ω), −K∇uh /∈ H(div,Ω)
or ∇ · (−K∇uh) 6= f . In order to introduce a “correction” for this phenomenon, in [6] is
introduced the concept of “reconstructed flux” and “reconstructed potential”.

Definition 1.1. Let uh be the solution of the discret problem associated to (3). We will
call:

i) flux reconstruction, any function th constructed from uh which satisfies:

th ∈ H(div,Ω), (4)

(∇ · th, 1)K = (f, 1)K , ∀K ∈ Th, (5)

ii) potential reconstruction, any function sh constructed from uh such that

sh ∈ H1
0 (Ω).

Using the concept of flux and potential reconstruction, in [6] is introduced the general
a posterior error estimation, which is not restricted to a particular numerical method to
solve the discret problem associated to (3).

Theorem 1.1. (Theorem 7.6.1 in [6]) Let u be the weak solution of (3) and uh any
arbitrary approximation solution satisfying uh ∈ H1(Th)1 . Let sh and th be a potential
and a flux reconstruction, respectively, as in Definition 1.1. Define,

i) ηR,K =
hK
π
‖f −∇ · th‖K ,

ii) ηF,K = ‖∇uh + th‖K ,

iii) ηNC,K = ‖∇(uh − sh)‖K .

Then
‖∇(u− uh)‖2 ≤

∑
K∈Th

(ηR,K + ηF,K)2 +
∑
K∈Th

η2
NC,K , (6)

where ‖∇v‖ = supw∈H1
0 (Ω),‖∇w‖=1(∇v,∇w) and π is the Poincaré constant 2.

1H1(Th) =
{
v ∈ L2(Ωn) : v|K ∈ H1(K)

}
2For all u ∈ H1

0 (Ω), ‖v‖ ≤ hΩ

π
‖∇v‖
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Note that, if we choose a numerical scheme where the approximation solution uh
satisfy uh ∈ H1

0 (Ω), for example classical Galerkin method, we can set sh = uh and then
ηNC,K = 0. This means that, for the a priori error estimation, we just need to find a flux
reconstructed. For the other hand, if we have a numerical scheme where −∇uh ∈ H(div),
(∇ · ∇uh, 1) = (f, 1) for all K ∈ Th then defining th = −∇uh we have ηF,K = ηR,K = 0,
that is, for this case we just need a potential reconstruction.

2 Error estimate for the mixed method based on enriched
space configurations

Given finite-dimensional approximation spaces Vh ⊂ H(div,Ω), Uh ⊂ L2(Ω), consider
the discrete mixed formulation for the model problem (1)-(2): Find (σh, uh) ∈ Vh × Uh
satisfying

(σh,q)Ω − (uh,∇ · q)Ω = 0, ∀q ∈ Vh, (7)

−(∇ · σh, v)Ω + (f, v)Ω = 0, ∀ v ∈ Uh. (8)

For each geometric element K ∈ Th, there is an associated master element K̂ and an
invertible geometric diffeomorfism FK : K̂ → K transforming K̂ onto K. For the present
study, the elements are supposed to be affine, meaning that FK has constant Jacobian.
Vector and scalar polynomial approximations spaces V̂ and Û are defined on K̂, and are
assumed to be divergence compatible, i.e., ∇ · V̂ ≡ Û . To compose Vh and Uh, the Piola
transformation Fdiv

K or the usual mapping FK (both based on FK) are used to map V̂ and

Û to local divergence compatible spaces V(K) and U(K) in the computational elements
K. From (8), ∇ · σh ∈ Uh is the L2-orthogonal projection ΠUh

f of f on Uh. Since
piecewise constants are certainly included in Uh, then −σh ∈ H(div,Ω) is an equilibrated
flux reconstruction. Using th = −σh, follows that ηF,K = ηR,K = 0 and as a consequence
of Theorem 1.1 we obtain the following results for the a posteriori error estimate.

Theorem 2.1. Let u ∈ H1
0 (Ω) be the weak solution of the model problem (3) and σ =

−K∇u ∈ H(div,Ω). Consider σh ∈ Vh and uh ∈ Uh be approximate solutions given by
the discrete mixed formulation (7)-(8). If sh ∈ H1

0 (Ω) is a potential reconstruction, then

‖∇(u− uh)‖2 ≤
∑
K∈Th

η2
NC,K . (9)

In order to give a fully computable a posteriori error estimate from the bound (9), we
only need to specify a function sh ∈ H1

0 (Ω) computed from the approximate solution. This
choice is important for the precision of the estimate and is crucial to prove local efficiency.

Different ways have been proposed to reconstruct a potential sh ∈ H1
0 (Ω) in order

to get a fully computable a posteriori error estimate for mixed methods [1], [6], [5]. In
particular, in [1] the methodology adopted is based on potential reconstrution sh obtained
by applying post-processing and averaging operators.

In this paper we propose a methodoloy consisting of three steps that are summarized
as follows: solution of the problem using an enriched space configuration for flux and
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potential variables (no post processing is required), smoothing of the potential variable
and solution of local Dirichlet problems with hybridization scheme.

Given a family of divergence compatible vector polynomial spaces V̂k and scalar spaces

Ûk defined in K̂, suppose that a direct decomposition V̂k = V̂∂
k ⊕

˚̂
Vk holds, where

˚̂
Vk

indicates the flux functions with vanishing normal components over ∂K̂. Otherwise, the
functions in V̂∂

k are assumed to have normal components over ∂K̂ of degree k. Under these

conditions, enriched versions V̂n+
k for n ≥ 1 are defined by adding to V̂k, higher degree

internal shape functions of the original space at level k+n, while keeping the original border

fluxes at level k, then the enriched space for flux is the denoted by V̂n+
k = V̂∂

k ⊕
˚̂
Vk+n.

The corresponding enriched potential spaces are now Ûn+
k = ∇ · V̂n+

k = Ûk+n.
For each K ∈ Th we define the approximation spaces Vh ⊂ H(div,Ω), and Uh ⊂

L2(Ω) in terms of local space configurations {Vn+
k (K), Un+

k (K)}, n ≥ 1, backtracked

from {V̂n+
k , Ûn+

k } by the transformations Fdiv
K and FK . For more details, see [2, 4].

Suppose that σh ∈ Vh and uh ∈ Uh have been obtained using the enriched approxi-
mation space, so −σh is an equilibrated flux reconstruction for uh.

Note that uh is discontinous across element interface e = K l ∩Kr, where K l and Kr

denotes the two elements of the partition Th sharing the common edge e. We propose as
in [1], an inter-element smoothing piecewise function γ̃ as follows.

1. For each internal face e, we define a simple average operator

γ̃|e :=
1

2

(
uKl
h |e + uKr

h |e
)
, (10)

where uKh denotes the potential uh restricted to element K.

2. For each node xn, define

γ̃(xn) :=
∑
K∈Ωn

uKh (xn)

#Ωn
, (11)

where Ωn = {K ∈ Th : xn ∈ K} the patch of elements containing the node xn.

The resulting piecewise polinomial function has continuous trace, and can be used as
a Dirichlet condition for the following local problem: Find (σ̌K , ǔK) such that

σ̌K = −∇ǔK on K, (12)

div(σ̌K) = f |K on K, (13)

ǔK = γ̃ on ∂K. (14)

The solution of the local problem (12) -(14) is obtained by applying a hybrid method [3]
with approximations spaces Vk+n(K), Uk+n(K) and Lk+n(∂K) for Lagrange multiplier
space, hence the local discrete problem can be read as: Find (σ̌K , ǔK) ∈ Vk+n(K) ×
Uk+n(K) such that

(σ̌K ,q)K − (ǔK ,∇ · q)K =
∑

e⊂∂K\∂Ω

< γ̃,q · η >e, ∀q ∈ Vk+n(K), (15)

−(∇ · σ̌K , v) + (f, v) = 0, ∀v ∈ Uk+n(K). (16)

The potential reconstruction is given by ǔh = (ǔK).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0340 010340-4 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0340


5

3 Numerical test

In order to illustrate the algorithm above described, we considere two different prob-
lems with Ω = (0, 1)2, mesh size h = 1/25 and k = n = 1.

On each case the effectivity index, given by the ratio of the estimation error and true

error, Ieff =
‖uh − ǔh‖
‖u− uh‖

, is shown. It is known that for an optimal error estimation the

effectivity index goes to one as the size mesh goes to zero, Ieff → 1, as h→ 0.

Example 1: Consider a nonhomogeneous Dirichlet problem with the exact solution
u(x, y) = sin(π x) sin(π y) + 1

1+x+y . Figure 1 illustrates the potential uh obtained by an
enriched mixed method (a), the potential reconstructed (b) as the proposal described here,
the L2 estimate error (c), the L2 exact error (d) and the Ieff . Note that, Ieff → 1 except
on the central elements, that can be improved with a mesh refinement.

(a) Potential uh (b) Potential reconstructed ǔh

(c) L2 error ‖ǔh − uh‖2 (d) L2 error ‖u− uh‖2

(e) Effectivity Index

Figure 1: Non homogenous problem.
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(a) Potential uh (b) Potential reconstructed ǔh

(c) L2 error ‖ǔh − uh‖2 (d) L2 error ‖u− uh‖2

(e) Effectivity Index

Figure 2: Singular problem.

Example 2: Consider a singular problem with the exact solution u(x, y) = 5(π2 +
arctan(20 × (0.25 − r2)), where r2 = x2 + y2. Figure 2 illustrates the results using the
same mesh configuration. Note that, also in this case Ieff → 1 in most of the elements in
the mesh.

4 Conclusions

We have described a method for reconstructing the potential for mixed finite element
approximations. This approach does not require post processing and uses a hybrid method
to solve a local problem. The numerical tests illustrated the effectiveness of the potential
reconstruction indicating that it may be used as computable error estimates.
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