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Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Avenida dos

Estados, 5001- Bangu - Santo André - SP, Brasil
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Abstract. Evolution algebras is a class of non-associative algebras with connections with
many mathematical fields. One natural way to define the evolution algebra associated to a
given graph is taking into account the adjacencies of the graph. In this review note we discuss
recents results about these mathematical structures and we emphasize in some interesting
open problems.
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1 Introduction

The study of non-associative algebras is an active field of research with many ap-
plications in mathematical physics and related fields. Some well known examples of non-
associative algebras are the Lie algebras and the Jordan algebras. The strong applicability
of these algebras suggests that by studying new non-associative structures could lead us
to discover new approaches to work in applied sciences. Our purpose is to discuss about
recent results in evolution algebras, which are a special case of genetic non-associative
algebras. The Theory of Evolution Algebras appeared around ten years ago in [7] as an
algebraic way to mimic the self-reproduction of alleles in non-Mendelian genetics. Indeed,
if one think in alleles as generators of algebras, then reproduction in genetics is repre-
sented by multiplication in the respective algebra. In the last years, different aspects of
the theory of evolution algebras have seen considered and many connections with other
mathematical fields, such as graph theory, stochastic processes, group theory, dynamic
systems, mathematical physics, between others, have been stablished.

In this review note we focus on recents results about evolution algebras associated
to graphs and we emphasize in some interesting open problems. The first definitions of
evolution algebras associated to some families of graphs have been formalized by [5, 6].
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We refer the reader also to [4] for another look in the interplay between evolution algebras
and graphs.

The rest of the paper is organized as follows. The remaining part of this section is
devoted to the first definitions and to a connection between evolution algebras and discrete-
time Markov chains. In Section 2 we review recent results regarding evolution algebras
associated to graphs.

1.1 Evolution algebras and Markov evolution algebras

Definition 1.1. Let A := (A, · ) be an algebra over a field K. We say that A is an
evolution algebra if it admits a countable basis S := {ei, i ∈ Λ}, such that

ei · ei =
∑

k cikek, for any i ∈ Λ,

ei · ej = 0, if i 6= j.
(1)

The scalars cik ∈ K are called the structure constants of A relative to S.

Note that Λ is a finite or a countable infinite index set. A basis S satisfying (1) is
called a natural basis of A. We say that A is real if K = R, and that it is nonnegative
if it is real and the structure constants are nonnegative. In addition, if 0 ≤ cik ≤ 1, and∑∞

k=1 cik = 1, for any i, k, then A is called a Markov evolution algebra. In this case, there
is a correspondence between A and a discrete time Markov chain (Xn)n≥0 with state space
{x1, x2, . . . , xn, . . .} and transition probabilities given by cik := P(Xn+1 = xk|Xn = xi),
for i, k ∈ N∗, and for any n ∈ N, where N∗ := N \ {0}. In this correspondence each state
of the Markov chain is identified with a generator of S.

Remark 1.1. The interplay between evolution algebras and Markov chains is an issue
that could be explored a bit more. The best reference about this connection is Tian’s book,
see [7]. Chapter 4 of that book is a review of many well-known results coming from Markov
chains in the context, or in the language, of Markov evolution algebras. Of course, when
we have this bridge between both fields, we have a new way to describe random phenomena;
i.e. through a non-associative algebras approach, which is quite interesting. However, we
have to take care when dealing with these mathematical objects. Although Theorem 16
in [7, page 54] claims that for each homogeneous Markov chain, there is an evolution
algebra whose structure constants are transition probabilities, and whose generator set is
the state space of the Markov chain, this is not totally true. The claim is true for Markov
chains with a finite state space. For the case of infinite state spaces it is not difficult to
find a counter-example. Take a Branching Process (Zn)n≥0 with an offspring distribution
given by a geometric random variable with parameter p ∈ (0, 1). Notice that from any state
i 6= 0 we can go to any state j ∈ N with positive probability. If we assume that there exists
an evolution algebra whose generator set is the state space of this Markov chain, namely
S = {ei, i ∈ N}, then by our previous remark it should be for i 6= 0,

e2i =
∑
j∈N

cijej , (2)

with cij 6= 0 for any j ∈ N. But this is a contradiction because A is a vector space.
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1.2 Evolution algebras associated to a graph

Our purpose is to discuss about recent results on evolution algebras associated to a
graph, in a sense to be defined later. So let us start with some basic notation of Graph
Theory. A graph G with n vertices is a pair (V,E) where V := {1, . . . , n} is the set of
vertices and E := {(i, j) ∈ V × V : i ≤ j} is the set of edges. If (i, j) ∈ E or (j, i) ∈ E we
say that i and j are neighbors; we denote the set of neighbors of vertex i by N (i) and the
cardinality of this set by deg(i). We say that G is an infinite graph if it has an infinite
number of vertices, i.e. V is a countable set and |V | = ∞. In that case we assume as
an additional condition for the graph to be locally finite, i.e. deg(i) < ∞ for any i ∈ V .
The adjacency matrix of a given graph G, denoted by A := A(G), is an n× n symmetric
matrix (aij) such that aij = 1 if i and j are neighbors and 0, otherwise. Note that the
adjacency matrix for infinite graphs is well defined. A graph is said to be singular if its
adjacency matrix A is a singular matrix (detA = 0), otherwise the graph is said to be
non-singular. All the graphs we consider are connected, i.e. for any i, j ∈ V there exists a
positive integer n and a sequence of vertices γ = (i0, i1, i2, . . . , in) such that i0 = i, in = j
and (ik, ik+1) ∈ E for all k ∈ {0, 1, . . . , n − 1}. For simplicity, we consider only graphs
which are simple, i.e. without multiple edges or loops.

The evolution algebra induced by a graph G is defined in [7, Section 6.1] as follows.

Definition 1.2. Let G = (V,E) a graph with adjacency matrix given by A = (aij). The
evolution algebra associated to G is the algebra A(G) with natural basis S = {ei : i ∈ V },
and relations

ei · ei =
∑
k∈V

aikek, for i ∈ V, (3)

and ei · ej = 0, if i 6= j.

Example 1.1. Consider a graph with 4 vertices and adjacency matrix given by

A =


0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

 .

The resulting graph, called Tadpole graph and denoted by T3,1, is represented in Fig. 1.
The evolution algebra A(T3,1) has a natural basis S = {e1, e2, e3, e4}, and relations given
by e21 = e2 + e3 + e4, e

2
2 = e1 + e3, e

2
3 = e1 + e2, e24 = e1 and ei · ej = 0, if i 6= j.

Another evolution algebra associated to a given graph G = (V,E) is the one induced
by the symmetric random walk on G, which is a discrete time Markov chain (Xn)n≥0
with states space given by V and transition probabilities given by P(Xn+1 = k|Xn =
i) = aik/ deg(i), where i, k ∈ V , n ∈ N, and deg(i) =

∑
k∈V aik. More precisely, since the
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Figure 1: Tadpole graph T3,1.

random walk is a discrete-time Markov chain, we can consider its related Markov evolution
algebra.

Definition 1.3. Let G = (V,E) be a graph with adjacency matrix given by A = (aij).
We define the evolution algebra associated to the SRW on G as the algebra ARW (G) with
natural basis S = {ei : i ∈ V }, and relations given by

ei · ei =
∑
k∈V

(
aik

deg(i)

)
ek, for i ∈ V, (4)

and ei · ej = 0, if i 6= j.

Example 1.2. Consider the Tadpole graph T3,1 of Example 1.1. In this case the evo-
lution algebra ARW (T3,1) has natural basis S = {e1, e2, e3, e4}, and relations given by
e21 = 1

3 (e2 + e3 + e4) , e
2
2 = 1

2 (e1 + e3) , e
2
3 = 1

2 (e1 + e2) , e
2
4 = e1 and ei · ej = 0, if i 6= j.

2 Isomorphisms: recent results

One question of interest when studying evolution algebras related to graphs is, what
is the connection (if any) between ARW (G) and A(G) for a given graph G. This question
has been an open problem, stated initially in [7,8], which has been addressed only recently
in [1, 3]. One way to understand such a connection is through the existence or not of
isomorphisms between these algebras.

Definition 2.1. Let A and B be two K-evolution algebras and S = {ei : i ∈ Λ} a natural
basis for A. We say that a non-singular K-linear transformation f : A −→ B is an
isomorphism if f(u) · f(v) = f(u · v), for all u, v ∈ A. In this case, we denote A ∼= B.

We shall see that ARW (G) ∼= A(G) provided G is well-behaved in some sense. We say
that G is a d-regular graph if deg(i) = d for any i ∈ V and some positive integer d. We
say that G is a bipartite graph if its vertices can be divided into two disjoint sets, V1 and
V2, such that every edge connects a vertex in V1 to one in V2. Moreover, we say that G is
a biregular graph if it is a bipartite graph G = (V1, V2, E) for which every two vertices on
the same side of the given bipartition have the same degree as each other. In this case, if
the degree of the vertices in V1 is d1 and the degree of the vertices in V2 is d2, then we say
that G is a (d1, d2)-biregular graph.
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2.1 The case of finite non-singular graphs: a complete description

Theorem 2.1. [3, Cadavid et al. (2018)] Let G be a finite non-singular graph. ARW (G) ∼=
A(G) if, and only if, G is a regular or a biregular graph. Moreover, if ARW (G) � A(G)
then the only evolution homomorphism between them is the null map.

Example 2.1. The tadpole graph. The (m,n)-tadpole graph, with m ≥ 3, consists of
a cycle graph on m vertices and a path graph on n vertices, connected with a bridge. The
graph considered in Example 1.1 is a (3, 1)-tadpole graph. We adopt the usual notation
Tm,n. See Fig. 2 for a general illustration of this type of graph.

Figure 2: (11, 4)-tadpole graph T11,4.

First, notice that Tm,n has m + n vertices which we label as in Fig. 2. The evolution
algebra A(Tm,n) has a natural basis S = {e1, . . . , em+n}, and relations given by

e2i = ei−1 + ei+1, for i ∈ {1, . . . ,m− 1} ∪ {m+ 2, . . . ,m+ n− 1},

e2m = em−1 + em+1 + e1,

e2n+m = en+m−1,

ei · ej = 0, if i 6= j.

(5)

On the other hand, the evolution algebra ARW (Tm,n) has a natural basis S = {e1, . . . , em+n},
and relations given by

e2i = 1
2(ei−1 + ei+1), for i ∈ {1, . . . ,m− 1} ∪ {m+ 2, . . . ,m+ n− 1},

e2m = 1
3(em−1 + em+1 + e1),

e2n+m = en+m−1,

ei · ej = 0, if i 6= j.

(6)

It has been showed that Tm,n is a non-singular graph provided m is odd. Then, we can
apply Theorem 2.1 to conclude that A(Tm,n) � ARW (Tm,n) as evolution algebras provided
m is odd. Moreover, the only evolution homomorphism between A(Tm,n) and ARW (Tm,n)
is the null map.
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2.2 The case of finite singular graphs: a new example and a conjecture

In order to prove Theorem 2.1 it has been important to deal with non-singular matrices,
see [3] for details. Although some partial results are true also for singular matrices,
see [1,3], new arguments must be developed to deal with the singular case. In this case we
suggest to explore the twin partition of the graph. This has been useful to deal with other
issues like the derivations space of an evolution algebra associated to a graph, see [2]. A
first example in this direction is the family of trees of diameter 3 considered by [3], when
we show that the only evolution homomorphism between A(G) and ARW (G) is the null
map. The same type of arguments, with a bit more of work, allows to obtain a similar
result for a new family of graphs. We summarize this result in the following example.

Example 2.2. The Caterpillar tree. The caterpillar tree is a tree in which all the
vertices are within distance 1 of a central path. For the sake of simplicity in the exposition
we adopt the notation Ca2,a3,...,an−1 for a caterpillar tree with a central path of n vertices,
and such that the ith-vertex of the path has degree equals to ai + 2, for i ∈ {2, . . . , n− 1}
while the first and the last vertices of the path have degree equal to 1 each. See Figure 2.2
for an illustration of a caterpillar tree.

Figure 3: Caterpillar tree C4,2,0,5,1.

It is not difficult to see that this is an example of singular path. Let Ca := Ca2,a3,...,an−1

be a caterpillar tree with n +
∑n−1

i=2 ai vertices, with ai ≥ 0 for any i ∈ {2, . . . , n − 1}.
Then, the only evolution homomorphism between A(Ca) and ARW (Ca) is the null map.
In particular, A(Ca) � ARW (Ca) as evolution algebras.

Remark 2.1. After considering the partial results from [1,3] and Example 2.2 we believe
that, in fact, Theorem 2.1 should be true for singular graphs too.

3 Conclusion

In this note we review recent results obtained by the authors related to evolution al-
gebras associated to graphs. This is an issue of current research and its understanding
could lead us to the development of new methods in applied mathematics. We suggest
this because of the many applications of the subject in other mathematical fields. As
we mentioned here, the problem of characterizing the connection between different evo-
lution algebras associated to the same graph is far to be solved. The case of singular
graph requires new arguments to be addressed. We believe that the twin partition of the
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considered graph could have an important role in this task. On the other hand, dealing
with connected graphs with an infinite number of vertices requires an approach based on
results about infinite-dimensional matrices. Both problems are an interest issue for future
research.
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[6] J. Núñez, M. L. Rodŕıguez-Arévalo and M. T, Villar. Mathematical tools for the
future: Graph Theory and graphicable algebras, Appl. Math. Comput. 219:6113–6125,
2013.

[7] J. P. Tian. Evolution algebras and their applications, Springer-Verlag Berlin Heidel-
berg, 2008.

[8] J. P. Tian. Invitation to research of new mathematics from biology: evolution alge-
bras, Topics in functional analysis and algebra, Contemp. Math. 672, 257-272, Amer.
Math. Soc., Providence, RI, 2016.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0423 010423-7 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0423

