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Santo André, SP, Brazil

Abstract. In general, there are two stages in designing a grid shell; creating a form and
optimizing the form. Several different approaches such as evolutionary methods or gradient-
based techniques have been used for optimization stage. Among evolutionary methods,
researchers mostly have used the genetic algorithms (GA) whereas the particle swarm op-
timization (PSO) has been shown to be more efficient than the GA in discrete problems.
Hence, here, we use PSO method for improving the regularity of grid shell structures. It is
illustrated how PSO method can be used in optimizing the grid shell structures. The tech-
nique is explained step by step, and therefore there is no need for any previous knowledge
of PSO.
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1 Introduction

For optimization of a grid shell structure, various aspects of the structures from the
economic and structural aspects to the aesthetic, functional, and constructional ones have
been considered and analyzed in the literature by gradient-based techniques such as com-
pass method [2], evolutionary approaches such as genetic algorithms [6, 7], or some other
techniques such as sphere packing approach [1]. For example, Richardson et al. [6] pre-
sented a two-phase design technique that uses dynamic relaxation for finding the funicular
form of the grid shell in the first phase, and obtains the optimal nodal positions employing
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a generic algorithm taking the material minimization and improved structural performance
into account. Using a multi-objective genetic algorithm, Winslow et al. [7] established a
design tool for synthesis of optimal grid shell structures taking into account two or more
load cases such as wind load. Regularity is one of the aspects of a grid shell which effects
on the economy of the structure. In fact, decreasing the number of different types of the
elements, regularity of a grid shell lessens the cost of manufacture and the assembly of
the components [4]. Therefore, we use the particle swarm optimization (PSO) method
to improve the regularity of a grid shell structure in this work. In fact, among all the
evolutionary methods such as memetic algorithms, genetic algorithms, PSO, shuffled frog
leaping, and ant-colony systems [3], the most considered technique in the literature of
optimization of grid shells is the genetic technique [1, 6, 7]. However, the PSO technique
performs better than the genetic method in terms of success rate and solution quality [3],
and this is why PSO is considered in this work. It is noted that the main contribution of
this work is to illustrate how the PSO technique can be used for improving the regularity
of grid shells.

2 Main block

Here, we first briefly explain the PSO method to make the work readable without any
previous knowledge of this method, and then it is described how the method can be used
for improving the grid shells’ regularity.

PSO method, which is a nature-inspired evolutionary optimization technique, has been
initially proposed by Kennedy and Eberhart [5] and has been applied in numerous different
optimization problems [3,5]. It is based on exploration and exploitation. The former is the
ability to explore diverse regions for locating a good optimum and the latter is the ability
of concentrating the search on every side of an encouraging space for purifying a potential
solution [5]. This way, the particle moves throughout the space guided by the memory of its
own best position (Pbest) and knowledge of overall best position (Gbest), and considering
the inertia to keep the previous direction of movement. The experiences of Pbest and Gbest
are accelerated by some factors multiplied by random numbers. Moreover, an inertia factor
is always considered in this technique. In fact, PSO is an iterative approach which starts
with an initial population and tends to the best solution iteratively. Each member of the
population has two attributes position and velocity which change in every iteration. Let
xi

k and vi
k respectively denote the position and velocity of particle i in the kth iteration

in the search space. The velocity of particle i for the next iteration is determined by

vk+1
i = wvki + c1r1

(
Pbestki − xki

)
+ c2r2

(
Gbestk − xki

)
, (1)

where w is the inertia factor, c1 and c2 are the acceleration factors for the experiences
of Pbest and Gbest, respectively, r1 and r2 are random numbers (vectors) in the interval
[0, 1]. It is noted that Pbesti

k is the best experienced positon for particle i up till the kth
iteration, and Gbestk is the best experienced position among all the particles so far. After
calculating the velocity of the particle i, its position is obtained from
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xk+1
i = vk+1

i + xki . (2)

Usually, the inertia factor, i.e., w, is selected between 0.4 and 0.9. However, some
researchers demonstrated that considering a greater amount for w, even w=1, at the
beginning, and then decrease it dynamically in each iteration using a damping factor, the
algorithm converges to the best solution faster. Therefore, we also consider w=1 with a
damping factor of wdamp = 0.99 in this work which increases the velocity of convergence.
The acceleration coefficients are considered here as c1 = 2 and c2 = 2. To illustrate the
method, a simple grid containing two regular pentagons is considered which contains 11
nodes and 20 elements (see Fig. 1). There are 11 nodes and 25 edges in this simple grid.
It is assumed that the nodes on the bigger polygon are fixed and cannot be displaced,
and hence the five edges of the bigger pentagon are also fixed. Hence, the main aim here
is to displace the nodes numbered 6, 7, . . . , 11 so that the regularity of the given grid is
improved. Since the nodes and edges of the bigger pentagon are fixed, there are 6 nodes
and 20 edges which can be changed. The length of the edges from node i to node 5+i, for
i = 1, 2, . . . , 5, is l1 = . . . =l5 = 2. The length of the edge between node i and node 6+i,
for i = 1, 2, . . . , 5, is l6 = . . . = l10 = 2.8541, and the lengths of the edges form nodes
6, 7, 8, 9, and 10 to node 11 are respectively equal to l11 = 0.97473, l12 = 1.0787, l13 =
1.0787, l14 = 0.97473, and l15 = 0.90451. Moreover, the length of the smaller pentagon’s
side is l16 = . . . =l20 = 1.1756.

To improve the regularity of the given grid in Fig. 1 by using the PSO algorithm,
it is required to define the particles. Since the nodal positions should be changed to
improve the regularity, we consider the coordinates of nodes numbered 6, 7, . . . , 11 as
the particles. At the beginning, the associated particle with the given simple grid is

X∗ =
[
x
y

]∗
=
[

0.0955 0.3090 −0.8090 −0.8090 0.3090 1.0000
−0.0000 0.9511 0.5878 −0.5878 −0.9511 −0.0000

]
, where the first column

is the coordinates associated with the inner point in the smaller pentagon, and the other
columns are the coordinates related to the nodes of smaller pentagon.

To generate an initial population, the lower bound LX = X∗ − k
[
1 1 1 1 1 1
1 1 1 1 1 1

]
and

upper bound UX = X∗ + k
[
1 1 1 1 1 1
1 1 1 1 1 1

]
are considered, where k can be any real

number, and coordinates for n points, i.e., n particles, are randomly generated between
LX and UX. It is noted that we consider k = 1.4 and set the velocity of all the particles
to zero for the initial population, i.e., vi

0 = 0, for i = 1, 2, . . . , n. Moreover, in our
experimentatl results, n =15 is considered as the number of population.

Since it is aimed to improve the regularity of the grid, the cost function is set as the
standard deviation of all the 20 variable lengths in the grid, i.e.,

C (X) =

(
1

m− 1

m∑
i=1

(
li − l

)2) 1
2

, (3)

where li is the length of ith element in the grid, for i = 1, 2, . . . , m, and l = 1
m

∑m
i=1 li.

For example, for the given grid in Fig. 1, the 20 lengths are l1 = . . . =l5 = 2, l6 = . . . =
l10 = 2.8541, l11 = 0.97473, l12 = 1.0787, l13 = 1.0787, l14 = 0.97473, l15 = 0.90451, and
l16 = . . . =l20 = 1.1756, and consequently the grid cost is 0.75653.
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Figure 1: A simple grid example.

For velocity clamping, we consider Vmax = 0.1(UX – LX) and Vmin = -Vmax, and
then after calculation of velocities by using Eq. (1), they are adjusted by

V =


Vmin if V < Vmin

V if Vmin ≤ V ≤ Vmax

Vmax if Vmax < V.
(4)

For velocity mirror effect, the following equation is considered for the given grid in
Fig. 1.

vki =

{
−vki if xk+1

i < Lxi or xk+1
i > Uxi

vki otherwise.
(5)

Apart from all the modifications and limits on the velocities, the new positions of
some particles may be out of search area. Therefore, in each iteration, if the position of
a particle exceeds the lower or upper bounds, the position of the particle is replaced with
the associated bound to keep being in the search area.

xk+1
i =


Lxi if xk+1

i < Lxi
xk+1
i if Lxi ≤ xk+1

i ≤ Uxi
Uxi if Uxi < xk+1

i

(6)

As the stopping criteria in PSO method, one may (1) stop by exceeding the given
maximum number of iterations, (2) stop when the improvement of solution in a given
number of iterations is less than a given limit, (3) stop when a satisfactory solution is
determined, or (4) stop when the cost function slope is almost zero.

In our numerical experiments for this example, it was seen that with the selected
factors and the first group of PSO parameters, the algorithm finds the solution in less
than 140 iterations. The final grid obtained by the algorithm is given in Fig. 2. The
standard deviation of 20 lengths in the final grid is 0.1104. It is noted that theoretically is
impossible to have the standard variation of zero in this example. The PSO’s diagram is
provided in Fig. 3. This diagram shows how the algorithm gets close to the final solution.
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Figure 2: The final regular grid obtained by the algorithm.

Figure 3: The PSO diagram.

3 Concluding remarks

Grid, lattice, or reticulated shells are generally defined as structures with the shape
and rigidity of a double curvature shell consisting of a grid not a continuous surface.
Several gradient-based and evolutionary approaches have been proposed in the literature
for optimization of grid shell structures. Among all the evolutionary techniques, genetic
technique is the one which has been employed the most whereas the particle swarm opti-
mization (PSO) technique has been shown to be more efficient than the genetic algorithm
in discrete optimization. Hence, in this work, the PSO algorithm was employed to improve
the regularity of grid shell structures. A simple grid containing two regular pentagons was
considered to illustrate the approach in details.
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