Trabalho apresentado no XXXIX CNMAC, Uberlândia - MG, 2019.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Escoamento na Cavidade com Tampa Móvel: Diferentes Abordagens na Resolução da Equação de Poisson

Rafael de Lima Sterza ¹ Leticia Braga Berlandi ² Beatriz Liara Carreira ³ Analice Costacurta Brandi ⁴ Messias Meneguette Junior ⁵ Universidade Estadual Paulista (Unesp), Faculdade de Ciências e Tecnologia, Presidente Prudente.

Resumo. As equações de Navier-Stokes têm um papel fundamental na mecânica dos fluidos, sendo capazes de descrever o comportamento de escoamentos de fluidos e esses podem ser encontrados em diferentes aplicações da indústria, da ciência ou da tecnologia, isto é, possuem diversas aplicações. Diante disso, neste trabalho, considera-se o clássico problema da cavidade com tampa móvel, sendo que a resolução da equação de Poisson foi realizada pelo método de diferenças finitas compactas e pelo método *Smoothed Particle Hydrodynamics* (SPH) e os resultados comparados com os encontrados na literatura.

Palavras-chave. Equações de Navier-Stokes, Problema da Cavidade, Método de Diferenças Finicas Compactas, Método SPH.

1 Introdução

Inúmeros são os avanços dos estudos realizados na mecânica dos fluidos, ciência que se dedica a estudar os fluidos (substâncias que se encontram no estado líquido ou gasoso) em repouso ou em movimento. Os fluidos estão em todas as partes da natureza como o ar, a água, o sangue que circula nas veias e artérias no corpo humano. No entanto, a complexidade matemática dessas equações não permite que, para problemas gerais, análises teóricas encontrem soluções analíticas [1].

Dois problemas são bastante utilizados para a avaliação de algoritmos numéricos para as equações de Navier-Stokes incompressíveis, um deles é o escoamento forçado pelo movimento da tampa de uma caixa, ou cavidade [1] que foi considerado neste trabalho. Para a resolução da equação de Poisson foi utilizado o método de diferenças finitas compactas de quarta ordem e o método SPH. Os resultados numéricos obtidos com essas técnicas foram comparados com resultados encontrados na literatura.

¹rlsterza@gmail.com.

²leticiaberlandi@gmail.com.

³beatrizlcarreira@gmail.com.

⁴analice.brandi@unesp.br.

⁵messias.meneguette@unesp.br.

2 Problema da Cavidade com Tampa Móvel

O interior da cavidade (Figura 1) é totalmente preenchido com fluido. Inicialmente, a tampa da cavidade e o fluido estão em repouso e as paredes são sólidas e impermeáveis. No instante t_0 a tampa da cavidade é acelerada para a velocidade U > 0. Devido às tensões viscosas, o movimento da tampa "puxa" o fluido que está adjacente a ela, originando o escoamento. $\partial \Omega_2$ $u \equiv 0$

Figura 1: Escoamento forçado pelo movimento da tampa de uma caixa (cavidade).

As equações que modelam o escoamento forçado pelo movimento da tampa de uma caixa descritas em termos da função de corrente-vorticidade são

$$\frac{\partial\omega}{\partial t} + \frac{\partial(u\omega)}{\partial x} + \frac{\partial(v\omega)}{\partial y} = \frac{1}{Re} \nabla^2 \omega \quad \text{em} \quad \Omega \times [0, t], \tag{1}$$

$$\nabla^2 \psi = -\omega \qquad \text{em} \quad \Omega \times [0, t], \tag{2}$$

onde $\psi(x, y, t)$ é uma função real, conhecida como função corrente, definida de maneira que satisfaça a conservação de massa e $\omega(x, y, t)$ é a vorticidade. Tem-se que

$$u = \frac{\partial \psi}{\partial y}, \qquad v = -\frac{\partial \psi}{\partial x},$$
(3)

$$\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y},\tag{4}$$

sendo que $u \in v$ denotam as componentes do vetor velocidade $\mathbf{u}(x, y, t) = (u(x, y, t), v(x, y, t))$. As condições iniciais e de contorno são

$$\mathbf{u}(x, y, 0) = \mathbf{0} \quad \text{em} \quad \Omega, \qquad \mathbf{u}(x, y, t) = \mathbf{0} \quad \text{em} \quad \partial\Omega_1 \times [0, t],$$
$$u(x, y, t) = U \quad \text{e} \quad v(x, y, t) = 0 \quad \text{em} \quad \partial\Omega_2 \times [0, t].$$
(5)

O domínio de simulação é Ω , a tampa é a fronteira $\partial \Omega_2$ e a caixa é a fronteira $\partial \Omega_1$. O escoamento em uma cavidade se caracteriza pela presença de uma grande zona de recirculação central e outras, menores, nos cantos inferiores. O tamanho dessas regiões, bem como sua localização, variam com o número de Reynolds do escoamento [1].

3 Formulação Matemática

Nesta seção, são apresentados a formulação corrente-vorticidade e as condições auxiliares do problema.

3.1 Corrente-Vorticidade

Dadas as equações do momento em $y \in em x$, respectivamente,

$$\frac{\partial v}{\partial t} + \frac{u\partial v}{\partial x} + \frac{v\partial v}{\partial y} = -\frac{\partial p}{\partial y} + \frac{1}{Re} \Big[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \Big], \tag{6}$$

3

$$\frac{\partial u}{\partial t} + \frac{u\partial v}{\partial y} + \frac{u\partial u}{\partial x} = -\frac{\partial p}{\partial x} + \frac{1}{Re} \Big[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \Big].$$
(7)

Derivando a equação (6) com relação a x e a equação (7) com respeito a y e, em seguida, subtraindo as equações resultantes e, utilizando a equação (4) e a equação da continuidade, obtém-se a equação (1). Note que a equação (1) apresenta dificuldades no cálculo de **u**. Por isso, define-se a função potencial ψ , pela equação (4). Substituindo na definição de ω , chega-se à equação (2).

3.2 Condições Iniciais e de Contorno

Como no instante inicial o fluido está em repouso \mathbf{u} é nulo. Os valores para $u \in v$ nas bordas da cavidade são dadas pelas equações (5). Utilizando os eixos coordenados como no plano cartesiano usual, então, da condição do problema no qual a parede é sólida, têmse a condição de não-escorregamento, e a variação da velocidade na direção tangencial à parede é nula. Logo, $\omega_{parede} = -\frac{\partial^2 \psi}{\partial \eta^2}$, onde η é a direção normal à parede. A função ψ na parede é calculada através da equação (4) substituindo os valores de $u \in v$ nas respectivas paredes. Sendo assim, é obtido que a variação de ψ é nula nas bordas, logo ψ é constante nas bordas, e por convenção, ψ é tomada como sendo nula.

4 Formulação Numérica

Nesta seção, são apresentados os métodos numéricos para a resolução do problema, junto com a discretização da equação e das condições de contorno.

4.1 Aproximações para as Equações do Problema

Para a solução do problema foi utilizada uma malha co-localizada, com $N \times N$ pontos. A equação (1) pode ser discretizada de maneira explícita utilizando diferenças finitas. Substituindo as aproximações na equação (1), obtém-se,

$$\omega_{i,j}^{t+1} = \delta_t \left[A \omega_{i,j}^t + \frac{\omega_{i-1,j}^t}{Re\delta_x^2} + \left(\frac{1}{Re\delta_x^2} - \frac{u_{i+1,j}}{\delta_x} \right) \omega_{i+1,j}^t + \frac{\omega_{i,j-1}^t}{Re\delta_y^2} + \left(\frac{1}{Re\delta_y^2} - \frac{u_{i,j+1}}{\delta_y} \right) \omega_{i,j+1}^t \right], \quad (8)$$

onde, $A = \frac{1}{\delta_t} + \frac{u_{i,j}}{\delta_x} + \frac{u_{i,j}}{\delta_y} - \frac{2}{Re} \left(\frac{1}{\delta_x^2} + \frac{1}{\delta_y^2} \right)$. Uma vez que a vorticidade foi calculada no interior do domínio, calcula-se a corrente, através da equação (2). Trata-se de uma equação de Poisson bidimensional, sendo que sua resolução foi realizada de duas maneiras

neste trabalho, pelo método de diferenças finitas compactas e pelo método das partículas.

Por fim, as velocidades são calculadas utilizando a equação (3), aproximando as derivadas com diferenças centrais, isto é, $u_{i,j} = \frac{\psi_{i,j+1} - \psi_{i,j-1}}{2\delta_y}$ e $v_{i,j} = -\frac{\psi_{i+1,j} - \psi_{i-1,j}}{2\delta_x}$.

4.2 Condições de Contorno

Tanto na entrada, quanto nas paredes, ω é calculado segundo a equação (2). No início, utiliza-se uma aproximação para $\psi_{0,j}$ e para $\psi_{1,0}$ de terceira ordem. Analogamente, aproximações são utilizadas no fim da cavidade, sendo que nas paredes, as expressões obtidas para a entrada podem ser simplificadas pelo fato de ser constante na direção x.

As paredes da cavidade foram consideradas impermeáveis, de modo que $v_{i,1} = v_{i,M} = 0$, $i = 2, \dots, N-1$, e utilizando as condições de contorno, tem-se que $u_{i,1} = 0$, $u_{i,M} = 1$, $i = 2, \dots, N-1$. Na saída, as velocidades foram consideradas constantes na direção x, chegando a $v_{N,j} = v_{N-1,j}$ e $u_{N,j} = u_{N-1,j}$ para $j = 2, \dots, M-1$.

4.3 Método de Diferenças Finitas Compactas

A equação (2) pode ser resolvida pelo método compacto de quarta ordem, que após a discretização [4], resulta em $\frac{1}{6}(\psi_{i+1,j+1} + \psi_{i+1,j-1} + \psi_{i-1,j+1} + \psi_{i-1,j-1}) + \frac{2}{3}(\psi_{i-1,j} + \psi_{i+1,j} + \psi_{i,j-1} + \psi_{i,j+1}) - \frac{10}{3}\psi_{i,j} = -\frac{h^2}{12}(\omega_{i-1,j} + \omega_{i+1,j} + \omega_{i,j-1} + \omega_{i,j+1} + 8\omega_{i,j}).$

4.4 Smoothed Particle Hydrodynamics

O método SPH é um método sem malha e a sua discretização se dá através de um conjunto de partículas que não possuem conectividade entre si, e também estão associadas a outras propriedades individuais relacionadas à física do fenômeno simulado. Para obter uma solução para a equação de Poisson é preciso aproximar alguns operadores: o divergente, o gradiente e o laplaciano [5]. E, para determinar o padrão da aproximação, definir a dimensão do suporte de influência, a consistência e a precisão, são utilizadas funções núcleo. No presente trabalho, a função núcleo utilizada foi baseada na spline quíntica [3].

5 Resultados Numéricos

Os resultados obtidos na resolução do problema foram comparados aos obtidos por Fortuna [1] e por Ghia *et al* [2]. O trabalho de Ghia *et al* [2] é um dos estudos numéricos clássicos sobre o escoamento na cavidade, no entanto, ressalta-se que o método SPH tem alto custo computacional impossibilitando realizar todas as comparações com este trabalho. As simulações foram realizadas para uma malha quadrada, N = 30, e para dois números de Reynolds, através de um computador com processador Intel Core i5 de 7^a geração e 8GB de memória RAM. Inicialmente, apresenta-se o resultado para Re = 10, onde o método compacto levou 14 segundos para convergir e o SPH, 1016 segundos. A Figura 2, representa a velocidade u dentro da cavidade.

Nota-se que os resultados obtidos estão coerentes com os apresentados por Fortuna [1], uma vez que as maiores velocidades ocorrem em pontos adjacentes à tampa móvel.

As linhas de corrente podem ser analisadas na Figura 3. Dessa vez, percebe-se que os resultados obtidos condizem com o da literatura e que a maior concentração está no centro. Ainda não é possível ver as linhas de corrente nos cantos inferiores. No entanto, quando utiliza-se Re = 100, isso já é observado. As Figuras 4 e 5 apresentam os resultados para Re = 100, onde o método compacto levou 84 segundos para convergir e o SPH, 3676 segundos, além disso, é possível notar uma semelhança ao que foi apresentado para Re = 10.

Além disso, foi realizado um estudo da comparação da velocidade u e v ao longo de linhas verticais (Figura 6(a)) e horizontais (Figura 6(b)), respectivamente. Vale ressaltar que a comparação foi realizada com os resultados do artigo de Ghia *et al* [2] para Re =100 e, além disso, em [2] apresenta-se uma quantidade limitada de dados referentes às velocidades u e v, que é inferior à quantidade de dados obtidos neste trabalho, por esse motivo a curva apresentada é mais grosseira quando comparada aos resultados propostos.

Nota-se, no entanto, que os resultados obtidos foram coerentes com os obtidos na literatura e tanto para a velocidade u quanto para a v, a resolução pelo método compacto ficou mais próxima da apresentada por Ghia *et al* [2].

6 Conclusões

No presente trabalho foi apresentado o problema da cavidade com tampa móvel, sendo que a resolução da equação de Poisson foi realizada pelo método de diferenças finitas compactas e pelo método SPH. Os resultados obtidos foram compatíveis com as referências [1] e [2], então pode-se concluir que as discretizações utilizadas na simulação do problema e, também, as aproximações utilizadas para os valores na fronteira, foram adequadas. Deve-se levar em consideração que outro método de resolução foi utilizado nas referências e, ainda assim, os resultados obtidos foram coerentes com a literatura.

Agradecimentos

Agradecemos à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo auxílio financeiro no desenvolvimento deste trabalho.

Referências

- [1] A. O. FORTUNA. Técnicas computacionais para dinâmica dos fluidos: conceitos básicos e aplicações. 2.ed. São Paulo: EDUSP, 2012.
- [2] U. GHIA, K. N. GHIA and C. T. SHIN. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys, 48, 387-411, 1982.
- [3] J. MORRIS. Analysis of smoothed particle hydrodynamics with applications. PhD thesis, Monash University, 1996.

- 6
- [4] F. M. OKORO and A. E. OWOLOKO. Compact Finite Difference scheme for Poisson equation using direct solver, *J. Math. and Tech.*, vol 3, p. 130-138, 2010.
- [5] F. PETRONETTO. A Equação de Poisson e a Decomposição de Helmholtz-Hodge com Operadores SPH. PhD thesis, PUC, Rio de Janeiro, 2008.

Figura 2: Vetores indicando a direção e a velocidade relativa no interior da cavidade para Re = 10.

Figura 3: Linhas de corrente em uma cavidade para Re = 10.

Figura 4: Vetores indicando a direção e a velocidade relativa no interior da cavidade para Re = 100.

Figura 5: Linhas de corrente em uma cavidade para Re = 100.

Figura 6: Comparação da velocidade \mathbf{u} através do centro geométrico para Re = 100.