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Abstract. This work deals with passive reduction of structural vibration by means of
random shunted piezoelectric patches. The systems analyzed, shunted structures, are com-
posed of a mechanical system with piezoelectric elements shunted with LR circuits. They
are electromechanical systems, i.e, coupled systems. Due to the coupling, energy can be
transferred between the mechanical and electromagnetic parts of the system. Tuning the
electromechanical parameters, it is possible to control the energy flow between the mechan-
ical and electromagnetic parts in a way that the amplitude of vibration of the structure is
attenuated over a range of excitation frequency. The idea is to use the shunted piezoelectric
patches as dampers to the structure vibration. When the shunt is perfectly tuned to the
resonance frequency to control, the vibration attenuation is optimal. However, the damping
performance is subjected to uncertainties in the electromechanical parameters. The objec-
tive of the paper is to quantify numerically the uncertainty in the attenuation performance
of a cantilever beam with two piezoelectric patches and a resonant random “RL”shunt. The
nominal values of the inductance and resistance are chosen in order to achieve maximum
energy dissipation of the second mode of the cantilever beam.

Key-words. Vibration reduction, Piezoelectric shunting, Sensitivity analysis, Uncertainty
quantification.

1 Introduction

Piezoelectric materials are proposed for many applications, especially in the field of
dynamics where their properties of coupling mechanical stress and strain with an electric
circuit are used to detect, measure, or control the vibrations. Some of today’s active re-
search fields that use piezoelectric materials are energy harvesting, passive or semi-passive
structural vibration damping, active vibration control, shape adaptation and structural
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health monitoring [11]. This work deals with passive reduction of structural vibration by
means of shunted piezoelectric patches. The problem consists of an elastic structure with
surface-mounted piezoelectric patches. It is an electromechanical systems, i.e., a coupled
systems in which energy can be transferred between the mechanical and electromagnetic
parts [4, 5]. The piezoelectric elements are connected to a resonant shunt circuits (“LR”
shunt) in order to damp specific resonant frequencies of the structure. When the shunt is
perfectly tuned to the resonance frequency to control, the vibration attenuation is optimal.
On the other hand, a slight shift generates a significant loss of the damping performance
of the system [1]. The purpose of this work is to evaluate the sensitivity of the system
vibration response (and thus the loss of attenuation) to uncertainties in the electrical pa-
rameters of the shunt (inductance and resistance), around their optimum value. Since
uncertainties are unavoidable, this paper discusses how important they are. To quantify
the vibration attenuation, two nondimensional variables are defined relating the amplitude
of the frequency responses in without “RL” shunt (short-circuit) and with shunt “RL”.
Another parameter observed is related with the difference between the maximal frequency
response for the short-circuited system and the the maximal frequency response for the
shunted system. The objective of the paper is to quantify the uncertainties in these three
parameters of interest when the inductance and resistance of the shunt are random. To
exemplify numerically the stochastic vibration attenuation, the methodology is applied to
a cantilever beam with two piezoelectric patches and a resonant “RL”shunt. The nominal
values of the inductance and resistance are chosen in order to achieve maximum energy
dissipation of the second mode of the coupled system. The paper is organized as follows.
In section 2, the dynamics of the coupled electromechanical system is presented. In sec-
tion 3, the variables used to quantify the vibration attenuation are defined. The stochastic
models to the electrical parameters of the shunt are presented in section 4. The numeri-
cal results of the uncertainty quantification of the vibration attenuation are discussed in
section 5.

2 Electromechanical Formulation

Elastic structure

RL shunt

Piezo. Patch

(a)

0.5 mm
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(b)

Figure 1: (a) An arbitrary structure with a piezoelectric patch connected to a resonant shunt. (b)

Model problem: cantilever beam with a piezoelectric patch connected to a resonant shunt [2].
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We consider an arbitrary elastic structure with one piezoelectric patch, sketched in
Fig. 1(a). We denote by u(x, t) the displacement of a point x of the structure, at instant
t. A resonant shunt is connected to the piezoelectric patch; V denotes the voltage between
the electrodes, which is also the shunt terminal voltage, and Q is the electric charge in one
of the electrodes. Considering the convention of sign for V on Fig. 1(a), Q is precisely the
charge in the upper electrode. Several models for this coupled electromechanical system
can be obtained, either in an analytic fashion or using a finite-element discretization [3].
Then, a reduced order model can be obtained by expanding the displacement ≅ onto N

vibration eigenmodes:

u(x, t) =
N
∑

1

Φi(x)qi(t) (1)

One can show that the modal coordinates qi(t) are solutions of a problem of the form:

q̈i + 2ξiωiq̇i + ω2

i qi − χiV = Fi for i ∈ {1, · · · , N} (2)

CV −Q+
N
∑

1

χiqi = 0 (3)

The electromechanical model of the problem is thus described by N modal equations, cor-
responding to the balance law of mechanical forces, and one electrical equation, associated
with the balance of electric charges on the piezoelectric electrodes. Here, the short-circuit
eigenmodes are used. They are the vibration modes of the structure with its piezoelectric
patch short-circuited (V = 0). Thus, (ωi,Φi) denotes the angular natural frequency and
mode shape of the corresponding ith mode, respectively. The electromechanical coupling
appears in those equations by a modal coupling coefficient χi, that characterizes the energy
transfer between the ith mode shape and the piezoelectric patch. The electric capacitance
of the patch is denoted by C. Finally, a modal structural damping term, of factor ξi, has
been added. It is convenient to rewrite equation Eq. (2) with Q as the electrical unknown.
By introducing equation Eq. (3) into Eq. (2) to eliminate V , one obtains the following set
of equations, equivalent to equation Eq. (2):

q̈i + 2ξiωiq̇i + ω2

i qi −
χi

C

N
∑

1

χiqi +
χi

C
Q = Fi for i ∈ {1, · · · , N} (4)

In the case of a resonant shunt, where the electric circuit connected to the piezoelectric
patches is a resistance R and an inductance L in series (1(a)), the relationship between V

and Q is V = −RQ̇ − LQ̈. Then, the dynamics of the coupled electromechanical system
becomes [8].

q̈i + 2ξiωiq̇i + ω2

i qi −
χi

C

N
∑

1

χiqi +
χi

C
Q = Fi for i ∈ {1, · · · , N} (5)

LQ̈+RQ̇+
1

C
Q−

N
∑

1

χiqi = 0 (6)
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3 Variables used to quantify the vibration attenuation

In this section, formulas derived in the previous section are applied to the analysis of
a cantilever beam sketched in Fig. 1(b). The geometry and constitutive parameters of the
steel beam and of the piezoelectric patch can be found in [2]. The beam is excited by a
sinusoidal force applied at its tip normal to the beam. The resonant shunt is tuned in order
to achieve maximum energy dissipation of the second mode (which occurs at frequency
ωSC
2

). The nominal values considered to the inductance and to the resistance are L =
14.8 H and R = 8000Ω. A reduced order model is constructed with two modes. Figure 2(a)
shows the frequency responses, in the short-circuited (hSC) and shunted (hLR) cases. One
of the parameters used to quantify the vibration reduction is related with the reduction
of the frequency response amplitude for the frequency ωSC

2
, i.e., hSC(ωSC

2
) − hLR(ωSC

2
),

illustrated in Fig. 2(b). Another parameter is related with the difference between the
maximal frequency response for the short-circuited system (which occurs at ωSC

2
) and the

the maximal frequency response for the shunted system (which occurs at ωLR
2

). These
two parameters of interest and the shift in frequency due to the coupling are defined as
nondimensional variables given by:

p1 =

∣

∣hSC(ωSC
2

)
∣

∣−
∣

∣hLR(ωSC
2

)
∣

∣

∣

∣hSC(ωSC
2

)
∣

∣

p2 =

∣

∣hSC(ωSC
2

)
∣

∣−
∣

∣hLR(ωLR
2

)
∣

∣

∣

∣hSC(ωSC
2

)
∣

∣

∆ω =
ωSC
2

− ωRL
2

ωSC
2

(7)

(a) (b)

Figure 2: (a) Frequency responses to the short-circuited (hSC) and shunted (hLR) systems. (b)

Zoom over the second mode shown in Fig. 2(a).

4 Stochastic model to the electrical parameters of the shunt

To evaluate the sensitivity of the system vibration response to uncertainties in electri-
cal parameters of the shunt around their optimum value, the inductance and the resistance
are considered to be random. Other sources of uncertainties exist in this electromechan-
ical system, such as the glue used to attach the PZT patches in the beam (affecting the
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electromechanical coupling). However this work focus on the uncertainties in the induc-
tance and the resistance. They are modeled as uniform random variables, called as L and
R respectively. It is considered that the inductance has mean L = 14.8 H and support
[0.9, 1.1]L. The resistance has mean R = 8000Ω and support [0.9, 1.1]R. Due to the
assumption, the dynamics of the coupled electromechanical system becomes a stochastic
dynamics and the parameters used to quantify the vibration reduction become random
variables, P1, P2 and ∆Ω.

5 Uncertainty quantification of the vibration attenuation

To estimate statistics and histograms of these parameters, i.e., quantify their uncer-
tainties [6, 7], the frequency response of the shunted stochastic system is evaluated 104

times using independent realizations of the inductance and resistance generated with the
Monte Carlo method [9, 10]. Figure 3(a) and 3(b) shows the normalized histogram of the
inductance and resistance samples. Figure. 4(a) shows the envelope graph of the stochastic
frequency response. The normalized histograms of P1, P2, ∆Ω and [P2 ∆Ω]T are shown
in Figs. 4(b), 5(a), 5(b) and 6.
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Figure 3: Normalized histogram of the (a) 104 inductance samples and (b) 104 resistance samples.
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Figure 4: (a) Envelope graph of the stochastic frequency response. (b) Normalized histogram of

the 104 P1 samples.
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Figure 5: (a) Normalized histogram of the (a) 104 P2 samples and (b) 104 ∆Ω samples.
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Figure 6: Normalized histogram of the 104 samples of the vector [P2 ∆Ω]T .

6 Conclusions

In this paper, the stochastic damping performance of a cantilever beam with two
piezoelectric patches and a resonant random “RL”shunt is investigated. The nominal
values of the inductance and resistance are chosen in order to achieve maximum energy
dissipation of the second mode of the cantilever beam. Two nondimensional variables are
defined to quantify the vibration attenuation. These the variables relate the amplitude
of the frequency responses in without “RL” shunt (short-circuit) and with shunt “RL”.
To evaluate the sensitivity of the system vibration attenuation to uncertainties in the
“RL”shunt, the inductance and the resistance are considered to be random. Statistics and
histograms of the parameters used to quantify the vibration attenuation are computed
with Monte Carlo simulations.
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[8] W. Manhães, R. Sampaio, R. Lima, P. Hagedorn and J-F. Deü. Lagrangians for elec-

tromechanical systems, Mecánica Computacional, vol. XXXVI, 42:1911–1934, 2018.

[9] R. Sampaio and R. Lima. Modelagem estocástica e geração de amostras de variáveis
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