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Abstract. This article describes the results obtained with a stochastic SIR (Susceptives-
Infectives-Recovered) model with impulsive vaccination campaigns. It tries to give answers
to the question of how vaccination campaigns should be implemented, regarding random
influences and two main targets which conflict with each other: making the vaccination
campaign as cheap and handy as possible and the total number of infected persons as
small as possible or the probability of eradication as greater as possible. The target of the
analysis is to compare if it is better to consider the probability of eradication before or in
the multiobjective optimization procedure. Results show that pre-consider the probability
of eradication will be similar to the post-considering regarding their costs and quantity of
infected persons, despite being computationally harder.
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1 Introduction

One of the most studied models describing the behavior of a disease in a population
is the endemic SIR (Susceptible-Infected-Recovered) [9]. It is based on deterministic non-
linear differential equations describing the influence of changes in one group on the other
ones, in the same species.

This article describes the results obtained with a stochastic SIR model (SSIR), to
better depict the characteristics of a disease where many little influences superpose and
may lead to sudden and unpredictable changes in the behavior of the disease [1,7],making
it more realistic in small communities [3]. The stochastic model is intended to image this
behavior by introducing random noise into the dynamic system. The weapon of choice
is the Brownian motion since it has mean zero, it is symmetric regarding negative and
positive deviations and it reflects and describes almost every situation that can be observed
in nature or socio-economics.

The SSIR model is extended here to analyze the effects of impulsive vaccination on
the population, and the dynamic system keeps autonomous in the time intervals between
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the consecutive impulse actions of control, making the vaccination campaign as cheap
and handy as possible and the total number of infected persons as small as possible or the
probability of eradication as greater as possible. The idea is to give concrete suggestions to
politicians or decision-makers how optimal vaccination campaigns should be implemented,
given for an example a certain level of probability of eradication. The target of the analysis
is to compare if it is better to consider the probability of eradication before or in the
multiobjective optimization procedure [1, 7].

The article is organized as follow: Section 2 describes the SSIR model with vaccination,
Section 3 presents the numerical simulation results, and Section 4 presents final discussions
and the conclusions of the work.

2 The stochastic SIR model with vaccination

2.1 SSIR Model description

Let S, I, and R be the number of Susceptible, Infected, and Recovered ones, respec-
tively. Since we want to keep the population size N constant (birth and death rate are
thought of as being equal), the third variable R is always determined by the knowledge
of the first two variables S and I by the relation R(t) = N − S(t) − I(t) for all the time
points t [10] .

As preparation for our stochastic model, we will first consider a discrete model. The
corresponding stochastic model is a continuous time Markov process {(St, It, Rt) : t ∈
[0,∞)} with values in Z3

+. The rates from above become the conditional transition rates
of the stochastic process (S, I,R). To each increment, we add and subtract its conditional
expectation, conditioned on the value of the process at the beginning of the time increment
of length ∆t. Each increment of the process is then decomposed into the sum of the
expected value of the increment and a sum of centered increments.

It is a well-known fact that for small time steps ∆t and large N , a process with centered
Poisson increments is well approximated by the process with Gaussian increments having
the same conditional variances. Therefore we will replace the Poisson variables ∆Zi by
increments of Brownian motion or - mathematically correct - Wiener process dWi. If we
introduce dimensionless variables and use the approximation of Poisson by Gauss which
leads to the use of the Wiener process, the above system becomes [3]:

dS =

(
µ(N − S)− βSI

N

)
dt+G1dW1 −G2dW2 (1)

dI =

(
β
SI

N
− (γ + µ)I

)
dt+G2dW2 −G3dW3, (2)

where

G1 =
√
µ(N + S), G2 =

√
β

N
SI, G3 =

√
(γ + µ)I

are the according standard deviations. Therefore, for large values of N , the stochastic
model will tend to the deterministic model. On the other hand, the smaller the value of
N , the bigger will be the influence of the noise.
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We implemented this model in Matlab and solved it by using the Euler-Maruyama
method, the stochastic version of the Euler method for solving differential equations [8].

2.2 Behaviour of the model under influence of vaccination

The deterministic SIR model converges to a stable point which depends on the choice
of the parameters. It can be shown that in the case where β ≥ µ+ γ, the stable endemic
equilibrium is given by:

(S∗, I∗) = N ·
(
µ+ γ

β
,

µ

µ+ γ
− µ

β

)
It is worth noticing that the percental equilibrium does not depend on the population size
N . Note that, for extreme parameter values, the stable point can describe a situation
in which the disease is almost eradicated (if β << γ, µ) or in which almost the whole
population gets infected (if β >> γ, µ).

If we apply a vaccination campaign on the system (which means that in certain time
steps a given percentage of the susceptible population gets vaccinated and becomes part of
the recovered population), the formerly continuous system becomes non-continuous, with
the functions S and R becoming step-size functions according to the vaccination rates.

To be precise, it means that the time in the closed interval [0, Tf ], being Tf the final
time, has to be partitioned in a set of instants previously fixed Γ = {τ0, ..., τM}, such that:
τ0 = 0, τM = Tf and τk+1−τk = ∆T [4]. The time between each τk and τk+1 is considered
as a stage of the problem. Consider the percentage of the susceptible individuals that will
be vaccinated during the campaigns: P = {p[0], ..., p[M − 1]}, such that p[k] = p(τk), for
each τk in Γ. Therefore, equation (1), in time τk, has to be updated as:

S(τ+k ) = S[k+] = S[k](1− p[k]); (3)

Apart from that, it underlies the laws of the differential system from above between the
vaccination time points.

2.3 Multiobjective optimization and Genetic Algorithms

In multiobjective optimization, more than one target function is considered. This rela-
tively new approach does not give just one single solution as the result of the optimization
process, but several non-dominated solutions - the so-called Pareto Front - instead. A
solution is said to be non-dominated when every other solution that is better in one of
the considered functions, is also worse in at least one other. A solution is only dominated
by another solution if that second solution is not worse in every of the considered target
functions [2, 5].

For optimizing the vaccination strategies, we consider two objective functions, related
to the costs with infected and vaccinated people. We consider here two first objective
functions, regarding consider the probability of eradication before or in the multiobjective
optimization procedure. Therefore, firstly, the first objective function F1 is the accumula-
ted number of infected people during the whole time horizon, to be minimized (and the the
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probability of eradication will be considered before the optimization procedure). Secondly,
the first objective F1 is the estimated probability of eradication indeed, to be maximized.
The second objective function F2 is always the cost of the campaigns, to be minimized,
which depends on how many persons have to be vaccinated. The decision variables are
the number of susceptible to be vaccinated in each campaign: P = {p[0], ..., p[M − 1]}.

The bi-objective optimization problem is then formulated in Equations (4) and (5):

optimize


F1 : the accumulated number of infected or the probability of eradication

F2 : the sum of vaccined people as the total cost with the campaigns
(4)

subject to:

dS =
(
µ(N − S)− β SIN

)
dt+G1dW1 −G2dW2, S(0) = So ≥ 0;

dI =
(
β SIN − (γ + µ)I

)
dt+G2dW2 −G3dW3, I(0) = Io ≥ 0;

G1 =
√
µ(N + S), G2 =

√
β
N SI, G3 =

√
(γ + µ)I

t ∈ (τ+k , τk+1];

S(τ+k ) = S[k+] = S[k](1− p[k]);
k = 0, 1, . . . ,M − 1;

0 < pmin ≤ p[k] ≤ pmax ≤ 1.0;

(5)

The dynamic system parameters used in this work are: µ = 1/70, β = 0.98, γ =
1/24, N = 200, and each SSIR is simulated in 1, 500 trial runs. The initial condition is
(s∗, i∗, r∗) = (0.06, 0.24, 0.70), We consider Tf = 360 u.t., pmin = 0.4, pmax = 0.8.

The multiobjective optimization model offers a whole set of optimal solutions regarding
the total number of infected people as well as the costs of the campaigns. Decision-makers
can then decide for one of these optimal campaigns, according to other variables like
budget, media influence, society’s view of the disease, guidelines by law or politics and so
on.

Genetic algorithms intend to copy the behavior of nature who optimizes using the
principles of selection, mutation, and recombination. Here a set of solutions is considered.
The set of these solutions undergoes a selection process, making up a set of parents with
good genes for the next rounds. From this set of considerably good solutions, a new po-
pulation is created by employing the principles of mutation and recombination. This new
set then undergoes the selection process again. Solutions are always compared regarding
their state of being dominated by others or being dominant for other solutions. At the
end of the process the best solutions, those who are not dominated by any other solution,
form the Pareto Front. One of the most famous multiobjective algorithm, which is used
in this work, is the NSGA II [6].

A parallel version of the standard NSGA-II is considered here, distributing the evalua-
tion of the objective function. Each algorithm is tested in 30 independent executions in 8
cores of a standard workspace. The population size is set to 40, the number of generations
is 100, the probability of crossover is 0.8, and the probability of mutation is 0.05.
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3 Results

In Section 3.1, the probability of eradication (POE) is post-considered, to decide which
nondominated vaccination police must be implemented. The first objective F1 is consi-
dered as the accumulated number of infected people during the time horizon. In Section
3.2, the first objective F1 is the estimated probability of eradication (POE) indeed. The
second objective function F2 is set to be the cost of the campaigns in the optimization
procedure of Sections 3.1 and 3.2.

3.1 Post-considering of POE

In this section, we use the NSGA-II for optimizing the vaccination campaigns consi-
dering the deterministic counterpart of SSIR, using F1 set to minimize the accumulated
number of infected people.

We compute the POE for each nondominated campaign come from the optimization
process, Figure 3.1 shows the campaigns of the Pareto Front with the respective POE.
Note that the rightmost campaigns within the Pareto Front have POE equal to zero,
according to the fact that their integral of infected persons is highest.

Since all the rightmost campaigns show to have a POE equal to zero, we can replace
them all by the leftmost, since choosing a campaign more to the right would bring no
further advantage, except for smaller costs. The same holds for the leftmost campaigns
from the Pareto Front: since all of them share a POE equal to one, they could be reduced
to the rightmost of these campaigns, since choosing a campaign more to the left would
also eradicate the disease, with fewer people getting infected until that point. In this way,
note that we can discard some of the campaigns proposed by the NSGA-II, and the Pareto
Front can, therefore, be reduced to a few points in the middle.

Figura 1: POE for each policy in the Pareto Front.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 7, n. 1, 2020.

DOI: 10.5540/03.2020.007.01.0414 010414-5 © 2020 SBMAC

http://dx.doi.org/10.5540/03.2020.007.01.0414


6

3.2 Pre-considering of POE

In this section, we use the NSGA-II for optimizing the vaccination campaigns consi-
dering the SSIR, using F1 set to maximize the probability of eradication. We replace the
first objective function - the integral of infected people - by the POE of the vaccination
strategy and optimize using the NSGA-II.

The Pareto Front of the optimization process looks like in the Figure 3.2. If we have
a closer look at how different strategies influence the population sizes of susceptibles and
infectives, we can note that a strategy which does not lead to the theoretical extinction
of the disease is similar to one who does not, in relation to the ratio of susceptibles to
infecteds over time. If we compute the integral of infected persons for those campaigns,
we see that the few newly found campaigns resemble very much the old ones which were
left after post-considering the POE, discarding some solutions from the first Pareto Front.

Figura 2: Pareto Front considering the POE as objective function.

4 Conclusions

This work studies how to take into account the POE for a given campaign in the
multiobjective optimization procedure using SSIR. We show that by taking into account
the POE, the number of campaigns under examination may be reduced significantly. The
complete population may be broken down into smaller partitions depending on the vac-
cination factor that is used for defending against the disease. If we consider the POE
from the beginning and use it as an objective function inside the optimization procedure,
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similar results can be achieved, which means that the proposed strategies are similar, re-
garding their costs and their quantity of infected persons and the relation to the ratio of
susceptibles to infecteds over time.
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