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Abstract: Elements of the d-dimensional real space R
d are called points. Maps x : Rd →M are

called configurations, where M = {0, 1, 2}. Any configuration x is determined by its components
xp for all points p ∈ R

d. The configuration all of whose components are zeros is called “all
zeros”. Two configurations x and y are called close to each other if the set {p ∈ R

d : xp 6= yp} is
bounded. A configuration is called an island if it is close to “all zeros”. The set of configurations
is denoted by Ω = MR

d

. Any map from Ω to Ω is called an operator. We say that an operator
D erodes an island x if there is a natural t such that xDt (the result of t iterative applications
of D to x) is “all zeros”. We call an operator D an eroder if it erodes all islands. Galperin
have obtained an eroder criteria for one-dimensional cellular automata by using his left and right
rates [1]. Galperin found a way of computing his rates [2] in the discrete space, but he presented
no detailed routine or implementation for computing them. Later de Santana generalized these
rates introducing the directinal Galperin’s rates. Directional Galperin’s rates were employed in
studying erodicity of two-dimensional cellular automata [5]. Here we present an algoritm for
computing Galperin’s rates. Furthermore, from this algorithm we can compute some directional
Galperin’s rates.
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Let d be a natural number. The d-dimensional real space Rd is called Space and its elements
are called points. Elements of the set M = {0, 1, 2} are called states and maps x : Rd → M
are called configurations. Any configuration x is determined by its components xp ∈ M for all
points p ∈ R

d. The configuration all of whose components are zeros is called “all zeros”. A
configuration is called an island if it is close to “all zeros”.

The set of configurations is denoted by Ωd = MR
d

. Any map from Ωd to Ωd is called an
operator. Throughout this article we write operators on the right side of configurations on which
they act. We call a configuration x invariant for an operator D if xD = x.

We order M in the evident way 0 < 1 < 2 and introduce a partial order on Ω as follows:
given x, y ∈ Ωd, we say that x preceeds y and write x ≺ y if xp ≤ yp for all points p ∈ R

d. We
call an operator D : Ωd → Ωd monotonic if

∀ x, y ∈ Ωd : x ≺ y =⇒ xD ≺ yD.

For any point p ∈ R
d we define a shift Shiftp : Ωd → Ωd by the rule

(x Shiftp)q = xq−p for all q ∈ R
d .

We call an operator D uniform if it commutes with all shifts.
We choose a natural number k and a list of k elements of Rd which we call neighborhood :

U = {u1, . . . , uk} where u1, . . . , uk ∈ R
d .

Any neighborhood U whose all elements belong to Z
d is called a lattice neighborhood. Any

neighboorhood U = {u1, . . . , uk} with k distinct real numbers in ascending order (i.e., u1 <
u2 < · · · < uk) is called ascending.
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Any map f : Mk →M is called a transition map. A neighborhood U and a transition map
f with one and the same parameter k determine an operator D by the following rule:

(xD)p = f(xp+u1
, . . . , xp+uk

) for all p ∈ R
d . (1)

We call an operator D regular if it is defined by (1) and

f(a, . . . , a) = a for all a ∈M. (2)

Notice that a regular operator defined by (1) is uniform and it is monotonic if and only if its
transition map f is monotonic, that is

a1 ≤ b1, . . . , ak ≤ bk =⇒ f(a1, . . . , ak) ≤ f(b1, . . . , bk).

Henceforth we consider only monotonic regular operators.

1 One-dimensional Background

A configuration x ∈ Ω1 is called increasing if

∀ p, q ∈ R : p < q =⇒ xp ≤ xq.

Analogously, a configuration x ∈ Ω1 is called decreasing if

∀ p, q ∈ R : p > q =⇒ xp ≤ xq.

We say that a configuration is monotonic if it is increasing or decreasing. Notice that if x is
monotonic, then there are p1, p2 ∈ R and limleft, limright ∈M such that

xp = limleft for all p < p1 and xp = limright for all p > p2.

A monotonic configuration x for which limleft 6= limright is called a (limleft, limright)-ladder.
For any (limleft, limright)-ladder x, we denote

Left(x) = sup { p ∈ R : xp = limleft} and

Right(x) = inf { p ∈ R : xp = limright} .

The real numbers Left(x) and Right(x) are called left barrier and right barrier of x respec-
tively. The non-negative number length(x) = Right(x) − Left(x) is called the length of the
(limleft, limright)-ladder x.

We say that a (limleft, limright)-ladder x is right-continuous at p0 ∈ R if there is a positive
real number ε such that

p0 < p < p0 + ε =⇒ xp = xp0 .

Moreover, a (limleft, limright)-ladder x is said to be right-continuous if it is right-continuous at
all p ∈ R. A left-continuous ladder is defined analogously. A (limleft, limright)-ladder x with
lenght(x) = 0, that is either increasing and right-continuous or decreasing and left-continuous
is called a (limleft, limright)-jump and is denoted by Jlimleft,limright.

Lemma 1 Let D be a one-dimensional regular operator and x be a right-continuous increa-
sing (limleft, limright)-ladder. Then xDt is also a right-continuous increasing (limleft, limright)-
ladder for all natural t.

From lemma 1 there are real numbers V01(D), V12(D) for which

J01D = J01 Shift
V01(D) and J12D = J12 Shift

V12(D).

The real numbers V01(D) and V12(D) are called the (01)-rate and the (12)-rate of the one-
dimensional operator D respectively.
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Lemma 2 Let D be a one-dimensional regular operator. Then the following limits exist and we
denote them thus:

lim
t→∞

Left(J02D
t)

t
= L02(D) , lim

t→∞

Right(J02D
t)

t
= R02(D) ,

lim
t→∞

Left(J20D
t)

t
= L20(D) and lim

t→∞

Right(J20D
t)

t
= R20(D).

Proofs of Lemmas 1 and 2 and other details can be found in [5]. The limits L02(D), R02(D),
L20(D) and R20(D) are called left (02)-rate, right (02)-rate, left (20)-rate and right (20)-rate of
the one-dimensional operator D respectively. They are natural generalizations of the Galperin’s
rates presented in [1, 2].

2 Back to d-dimensional Case

We call by direction any point in R
d whose norm is one. Any direction ‖v‖−1v where v ∈ Z

d is
called a lattice direction.

Given a direction δ and neighboorhood U = {u1, . . . , uk}, we call

Uδ = {uδ1, . . . , uδk} = {〈u1, δ〉 , 〈u2, δ〉 , . . . , 〈uk, δ〉} (3)

the δ-neighborhood.
Let us fix a d-dimensional regular operator D : Ωd → Ωd, where d > 1. For each direction δ

we define a one-dimensional regular operator Dδ : Ω1 → Ω1 by the rule

(xDδ)p = f(xp+uδ1
, . . . , xp+uδk

) for all p ∈ R.

The directional (01)-rate and directional (12)-rate of D along a direction δ are respectively
the real numbers V01(Dδ) and V12(Dδ) for which

J01 Dδ = J01 ShiftV01(Dδ) and J12 Dδ = J12 ShiftV12(Dδ) .

The directional left (02)-rate, directional right (02)-rate, directional left (20)-rate, and directional
right (20)-rate of D along a direction δ are the following limits:

lim
t→∞

Left(J02 Dδ
t)

t
= L02(Dδ), lim

t→∞

Right(J02 Dδ
t)

t
= R02(Dδ),

lim
t→∞

Left(J20 Dδ
t)

t
= L20(Dδ) and lim

t→∞

Right(J20 Dδ
t)

t
= R20(Dδ)

respectively.
We say that an operator D erodes an island x if there is a natural t such that xDt (the

result of t iterative applications of D to x) is “all zeros”. We call an operator D an eroder
if it erodes all islands. The problem of discerning eroders has been studied for years. It was
shown [4] that even for very restricted classes of operators the problem of discerning eroders
among them is algorithmically unsolvable. Although there are some positive results, most of
them pertain to one of these two cases: either the space has dimension one [1, 2] or the set of
states has only two elements [10, 11, 12]. The first case beyond these results, which comes to
mind is when the dimension of the space is two and the set of states has three elements. For
this case a few concrete results have been obtained in [3] and the first article containing general
results about this case is [8]. In [1], Galperin have obtained an eroder criteria for discrete one-
dimensional cellular automata by using his left and right rates. In [2], Galperin have found a
way of computing his rates, but he did not present any detailed routines for computing them.
Furthermore, in [5] were proved some erodicity results by using directional Galperin’s rates. A
natural question is: How can one actually compute a directional Galperin rate?
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3 Results

Lemma 3 Let D be an one-dimensional operator defined by an f and an ascending neighborhood
U . Then Algorithm 1 computes V01.

Algorithm 1 Computing V01 routine

Require: k, f, U ⊲ function f : Mk →M and U = {u1, . . . , uk}
1: x← (0, 0, . . . , 0) ⊲ x ∈ {0, 1}k

2: for i← 1, k do

3: x(k − i+ 1)← 1
4: if f(x) = 1 then

5: i01 = k − i+ 1
6: end if

7: end for

8: V01 = −ui01

Computations of V12, V10 and V21 are analogous.

Lemma 4 If V01 < V12, then L02 = V01 and R02 = V12.

Lemma 5 Let D be an one-dimensional operator defined by an f and an ascending lattice
neighborhood U . Then Algorithm 2 computes L02 and R02.

Algorithm 2 Computing R02 and L02 routine

Require: k, f, U ⊲ function f : Mk
2 →M2 and U = {u1, u2, . . . , uk}

1: Computing V01 routine
2: Computing V12 routine
3: if V01 ≤ V12 then

4: L02 = V01 and R02 = V12

5: else

6: C = 0 and Ladder(C) = J02
7: while Lenght(Ladder(C)) do not repeat do
8: Ladder(C + 1)= (D Ladder(C))
9: C = C + 1

10: end while

11: T = steps to repeat, L02 = R02 = (Right(Ladder(C))− Right(Ladder(C − T )) )/T
12: end if

Now, suppose that U = {u1, . . . , uk} with k distinct real numbers is not an ascending neigh-
borhood. Let us denote by Ũ = {ũ1, . . . , ũk} the ascending neighborhood obtained by sorting
the elements of U in the ascending order. Let us denote by ρ : {1, 2, . . . , k} → {1, 2, . . . , k} the
permutation for which

ui = ũρ(i) for all i ∈ {1, 2, . . . , k} .

Consider the map φ : Mk →Mk given by

φ(a1, . . . , ak) = (aρ(1), . . . , aρ(k)) . (4)

Lemma 6 Let D and D̃ be one-dimensional operators defined by f , U and f̃ = f ◦ φ, Ũ
respectively. Then D = D̃.
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At last, suppose that U = {u1, . . . , uk} has not k distinct elements. Algorithm 3 give us
a neighborhood U∗ = {u∗1, . . . , u

∗

k∗} with k∗ distinct elements and a map π. Let us define a
transition map f∗ : Mk∗ →M by

f∗(a1, . . . , ak∗) = f(aπ(1), aπ(2), . . . , aπ(k)) .

Algorithm 3 Obtaining π and U∗ routine

Require: k, U ⊲ U = {u1, u2, . . . , uk}
1: u∗1 = u1.
2: π(1) = 1.
3: for j ← 2, k do

4: τ ← uj
5: l← 1
6: while τ 6= u∗l do

7: l← l + 1
8: end while

9: u∗l ← τ
10: π(j)← l
11: end for

12: return π, k∗ and U∗

Lemma 7 Let D and D∗ be one-dimensional operators defined by f , U and f∗, U∗ respectively.
Then D = D∗.

Theorem 1 Let D be one-dimensional operator defined by f and lattice neighborhood U . Then
Algorithm 4 computes L02 and R02.

Algorithm 4 Computing Galperin’s rates routine

Require: k, f, U ⊲ function f : Mk →M and U = {u1, u2, . . . , uk}
1: Obtaining π and U∗ routine with k and U
2: f∗(a1, . . . , ak∗) = f(aπ(1), aπ(2), . . . , aπ(k))

3: Sorting the elements of U∗ in the ascending order returning Ũ∗ and ρ
4: φ(a1, . . . , ak∗) = (aρ(1), . . . , aρ(k∗))

5: f̃∗ = f∗ ◦ φ
6: Computing V01 and V12 routine with f̃∗ and Ũ∗

7: Computing R02 and L02 routine with f̃∗ and Ũ∗

Corollary 1 Let D be a d-dimendional operator defined by a boolean monotone function f and
a neighborhood U . Let δ be a direction. The first 5 steps of Algorithm 4 with k, fδ and Uδ

returns f̃∗

δ and Ũ∗

δ and Algorithm 1 with f̃∗

δ and Ũ∗

δ returns the directional (01)-rate of D along
direction δ.

Corollary 2 Let D be a d-dimensional operator defined by f and lattice neighborhood U . Given
v ∈ Z

d, consider W = {〈u1, v〉, . . . , 〈ud, v〉}. Let D′ be the one-dimensional operator defined
by f and W . Algorithm 4 with f and W returns V01(D

′), V12(D
′), L02(D

′), R02(D
′), and

‖v‖−1V01(D
′), ‖v‖−1V12(D

′), ‖v‖−1L02(D
′), ‖v‖−1R02(D

′) are the directional Galperin’s rates
of D along the lattice direction ‖v‖−1v.
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4 Conclusions

In order to test our algorithms we have developed and implemented a routine that give us
random examples of monotone transition maps [6]. Algorithm 4 will facilitate the inductive
reasoning concerning the conjecture presented in [9]. There is an equivalent formulation for
Toom’s erodicity criteria [10] by using a finite set of directional (01)-rates [7]. Once erodicity of
two-state cellular automata could be answered by using just a finite set of directional (01)-rates,
a priori, it is plausible to believe that we can obtain similar results to those presented in [8] by
using just a finite set of directional right (02)-rates too. Corollary 2 will be useful in investigating
that belief.
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