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Abstract: Monotone multivalued functions have been widely employed in discrete mathema-
tics, multivalued logics and reliability theory, in special its particular case of monotone boolean
functions. However, our interest in them came from the kind of monotone cellular automata
studied in [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13], where monotone multivalued functions play a fun-
damental role. At first, we present an algorithm that generates random examples of monotone
multivalued functions. Our second algorithm provide an estimative for the number of monotone
multivalued functions, which shall be called here Dedekind number. Our first algorithm provi-
ded examples that were used for testing routines that compute Galperin’s rates [9]. Moreover,
it will facilitate the inductive reasoning concerning monotone cellular automata.
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1 Introduction

Let m and k be natural numbers. The set Mm = {0, 1, . . . ,m} is called the set of states. Let
v = (v1, . . . , vk) and u = (u1, . . . , uk) be elements of Mk

m. We denote

v ≺ u ⇔ v1 ≤ u1 , . . . , vk ≤ uk .

Notice that ≺ defines a partial order.
Any function f : Mk

m →Mm is called a multivalued. A multivalued function f : Mk
m →Mm

is called monotone if
∀v, u ∈Mk

m : v ≺ u⇒ f(v) ≤ f(u) . (1)

Notice that a multivalued function f : Mk
m → Mm is monotone if and only if it satisfies the

following set of integer inequalities:

0 ≤ f(a1, a2, . . . , ak) ≤ m for all a1, a2, . . . , ak ∈Mm

0 ≤ f(a1 + 1, a2, . . . , ak)− f(a1, a2, . . . , ak) for all a2, a3, . . . , ak ∈Mm, a1 ∈Mm−1

0 ≤ f(a1, a2 + 1, . . . , ak)− f(a1, a2, . . . , ak) for all a1, a3, . . . , ak ∈Mm, a2 ∈Mm−1

...

0 ≤ f(a1, a2, . . . , ak + 1)− f(a1, a2, . . . , ak) for all a2, . . . , ak−1 ∈Mm, ak ∈Mm−1

(2)

Sometimes it is also assumed that

f(a, . . . , a) = a for all a ∈Mm . (3)

Monotone multivalued functions have been widely employed in discrete mathematics, multi-
valued logics and reliability theory, in special its particular case of monotone boolean func-
tions. However, our interest in them came from the kind of cellular automata studied in
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[1, 2, 4, 7, 8, 9, 10, 11, 12, 13], where monotone multivalued functions satisfying assumption (3)
play a fundamental role.

Counting the number of monotone functions from Mk
1 to M1 is a classical problem. This

number is known as Dedekind number. Here the number of monotone multivalued functions
from Mk

m to Mm shall be also called Dedekind number.
Our questions are:

1. Given k and m, how can we can generate a random example of monotone multivalued

function?

2. Given multivalued function, how can we estimate Dedekind numbers for multivalued mo-

notone functions?

2 Generating

The map d : Mk
m ×Mk

m → R+ given by

d(v, v′) =

k
∑

i=1

|vi − v′i|

is a metric. The simple oriented graph Hm,k where the set of vertices is Mk
m and the set of edges

is
Em,k =

{

(v, v′) ∈Mk
m ×Mk

m : d(v, v′) = 1, d(v, 0) < d(v′, 0)
}

is called Hasse diagram of Mk
m. The adjancency matrix of graph Hm,k is denoted by Am,k.

A partial order ≺∗ on the set Mk
m in an extension of another partial order ≺ on the set Mk

m

if
∀v, u ∈Mk

m : v ≺ u⇒ v ≺∗ u .

A linear extension is an extension that is also a total order.

Algorithm 1 Random generator of monotone multivalued functions

Require: k,m

1: Obtaining Am,k routine.
2: Raffling a linear extension routine with Am,k.
3: Third routine with the outcome from the previous routine.

The Raffling a linear extension routine was obtained by modifying the topological ordering

algorithm [5] and using some ideas presented in [6]. This routine requires the partial order ≺ on
the set Mk

m represented by the adjacency matrix Am,k and returns a random example of linear
extension ≺∗ of ≺ on the set Mk

m.
Let us present the idea of the Third routine. After the second routine we have

(0, 0, . . . , 0) = p1 ≺
∗ p2 ≺

∗ · · · ≺∗ p(m+1)k = (m,m, . . . ,m) ,

where pj denotes the j-th element according the total order and j ∈
{

1, 2, . . . , (m+ 1)k
}

. Sup-
pose that the outcome of an uniform discrete distribution in the integer interval [1, (m+ 1)k] is
j1. Then f(pj) = 0 for all j < j1 and f(pj1) = 1. If j1 = (m + 1)k, then it is over. Otherwise,
suppose that the outcome of an uniform discrete distribution in the interval [j1 + 1, (m + 1)k]
is j2. Then f(pj) = 1 for all j1 < j < j2 and f(pj2) = 2. If j2 = (m + 1)k, then it is over.
Otherwise, suppose that the outcome of an uniform discrete distribution in the integer interval
[j2 + 1, (m + 1)k] is j3 and so on.

Theorem 1 Given k and m, the outcome of Algorithm 1 is a random variable whose sample

space is the set of all monotone multivalued functions from Mk
m to Mm.
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We have implemented Algorithm 1 and a modified version of Algorithm 1 whose outcome is a
random variable where its sample space is the set of all monotone multivalued functions from
Mk

m to Mm satisfying (3).

3 Estimating Dedekind number

Consider the set Fm,k of all multivalued functions from Mk
m to Mm. We know that Fm,k has

(m+ 1)(m+1)k elements. However, how may among these elements are monotone?
Let n be a natural number. Algorithm 2 estimates the proportion of monotone multiva-

lued functions in the set Fm,k. The system of integer inequalities (2) can be used for testing

Algorithm 2 Estimating proportion routine

Require: k,m, n

1: for j ← 1, n do

2: s← 0
3: Generate a random example of multivalued function fj
4: if fj is monotone then

5: s← s+ 1
6: end if

7: end for

8: return pn = n−1s

monotonicity of multivalued function fi in Algorithm 2.

Lemma 1 The sequence {pn (m+1)(m+1)k}n∈N converges in probability to the Dedekind number.

4 Conclusions

Algorithm 2 is not implemented yet. The modified version of Algorithm 1 provided examples
that were used for testing routines that compute Galperin’s rates [9]. Moreover, Algorithm 1
will facilitate the inductive reasoning concerning monotone cellular automata.
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