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Abstract. One recent work, Paiva et al. introduced the concept of quasi-overlap functions on
bounded lattices and investigated some vital properties of them. In this paper, we continue consider
this research topic and focus on a generalization, called general quasi-overlap functions, which
measure the degree of overlapping of several classes in a given classification system and for any
given object. We also provide a characterization, as well as some methods of constructing these
functions.
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1 Introduction

Aggregation functions has been widely studied in the fuzzy set theory. The importance of these
functions is made apparent by their wide use, not only in theory of functional equations or measure
and integration theory, but also in several applied fields. In [1], a mathematical model for medical
diagnosis is given by equation S ⊗t X = T , where S and T are respectively the matricial forms
of the fuzzy relations of symptoms and patients, with the product t-norm, then the diagnostic
matrix is given by D = S−1 ⊗gn T , where gn denotes the Goguen’s implication. In [12] Sugeno
integrals, for a given fuzzy measure, is studied under the viewpoint of aggregation and are used to
determine the fuzzy expected valued applied to the accidents of traffic analysis, in the São Paulo
city, Brazil. Moreover, a chapter is dedicated to fuzzy decision making in public health strategies
based on fuzzy aggregation functions.

In this perspective, there are situations in which we need to measure the degree of overlapping of
an object in a fuzzy classification system with more than two classes. In [17], to develop a classifier
that tackles the problem of determining the risk of a patient of sufferingfrom a cardiovascular
disease within the next 10 years, the authors used rules of the type:

Rule Rj : If xp1 is Aj1 and . . . and xpn is Ajn then Class = Cj with RWj ,

where the inference procedure is an aggregation An

(
µAj1

(xp1), . . . , µAjn
(xpn)

)
. In [7], the authors

studied a special type of n-ary aggregation function on [0, 1], called general overlap functions,
which measure the degree of overlapping (intersection for non-crisp sets) of n different classes,
for computing the matching degree in a classification problem. As one kind of binary general
overlap functions, in [13] the authors extended the notion of BL-algebras, which are the algebraic
counterpart of the a type of fuzzy logic modeled by Peter Hájek. This class of functions offers a
promising field of research [2, 4, 8, 14, 15]. In [14], Paiva et al. introduced the concept of quasi-
overlap functions on bounded lattices and investigated some vital properties of them. In this
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paper, we continue consider this research proposing a generalization of these functions, called
general quasi-overlap functions, which are special aggregation functions on bounded lattices. From
the applications point of view, the discussion of general quasi-overlap functions on bounded lattices
will help us define new Choquet and Sugeno integral classes on bounded lattices that can provide
us some potential applications in above fields.

Therefore, this paper is organized as follows: Section 2, in addition to establishing the notation
used, we provides a review on lattices and aggregation functions on lattices. Moreover, to obtain
a characterization theorem for general overlap functions, in the context of lattices, we recall the
notion of quasi-groups, as well as some of their useful properties throughout this paper. Section
3 we formalize the notions of general overlap functions to the context of lattices. Moreover, a
characterization and construction methods of general overlap functions are proposed. Finally,
Section 4 gives some final remarks.

2 Basic notions and terminology

In this section, we recall some basic concepts and terminologies used throughout the paper.

2.1 Aggregation functions on bounded lattices

In this subsection, the reader is assumed to be familiar with some elementary notions of partial
orders (or posets). For more details it is indicated [3, 6].

A poset (X,≤X) where each pair of elements x, y ∈ X has infimum and supremum, denoted
respectively by x ∧ y and x ∨ y, is called lattice. If there are 0X , 1X ∈ X such that for all x ∈ X,
x ∧ 1X = x and x ∨ 0X = x, then (X,≤X) is called bounded lattice. Whenever the order ≤X

is clear in the context, we will simply say that X is a lattice. We now review concept of the

Cartesian product of lattices. If (X1,≤X1
), . . . , (Xn,≤Xn

) are lattices and
n∏

i=1

Xi = X1× . . .×Xn

is the Cartesian product of the underlying sets, then also

(
n∏

i=1

Xi,≤comp

)
is a lattice, the so-called

product lattice of (X1,≤X1), . . . , (Xn,≤Xn), where ≤comp is the componentwise partial order on

the Cartesian product
n∏

i=1

Xi given as follows: let ~x = (x1, . . . xn) and ~y = (y1, . . . yn) be two points

of
n∏

i=1

Xi. Then, ~x ≤comp ~y if and only if xi ≤Xi yi, for all i = 1, . . . , n. Let X be a bounded

lattice, and n ∈ N be fixed. An n-ary mapping ψ : Xn −→ X is increasing if ψ(~x) ≤X ψ(~y)
whenever ~x ≤comp ~y. If the orders ≤X and ≤comp are respectively replaced by the strict orders
<X and <comp, then one obtains a stronger requirement. A mapping with this property is called
strictly increasing. On the other hand, if ψ(~y) ≤X ψ(~x) whenever ~x ≤comp ~y, then ψ is a decreasing
mapping. Similarly, strictly decreasing mappings are defined. Recent studies have focused on n-ary
mappings on bounded lattices called aggregation functions [5, 11,14].

Definição 2.1 ([11]). Let X be a bounded lattice. A mapping F : Xn −→ X is called an aggregation
function on X whenever it is increasing and satisfies boundary conditions: F (0X , . . . , 0X) = 0X
and F (1X , . . . , 1X) = 1X .

We also remember that an n-ary aggregation function F on a bounded lattice X is called
symmetric, if F (x1, . . . , xi, . . . , xj . . . , xn) = F (x1 . . . , xj , . . . , xi . . . , xn), for all i, j ∈ {1, . . . , n}.

Important types of n-ary aggregation functions on lattice X = [0, 1] equipped with the usual
ordering of real numbers are n-dimensional orvelap functions [10] and general overlap functions [7].
In Section 3, the notion of general overlap functions will be extended to the context of lattices. To
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obtain a characterization theorem for these functions, the next subsection will be dedicated to the
algebraic structure used for this purpose.

2.2 The algebra of quasigroups

Let (X, ∗) be a groupoid3 and let y be any fixed element in X. The so-called translation maps
Ly and Ry can be defined by Ly(x) = y ∗ x and Ry(x) = x ∗ y for all x ∈ X. It follows that
Ly : X −→ X and Ry : X −→ X for each y ∈ X.

Definition 2.1 ([16]). The groupoid (X, ∗) is called a quasigroup if the maps Ly : X −→ X and
Ry : X −→ X are bijections for all y ∈ X.

Theorem 2.1 ([18]). A groupoid (X, ∗) is a quasigroup if and only if for all ordered pairs (y, z) ∈
X2 there exist unique solutions x,w ∈ X to the equations x ∗ y = z and y ∗ w = z.

Let (X, ∗) be a quasigroup and consider elements x and y of X. The element x\y of X is defined
as the unique solution z of the equation x ∗ z = y, i.e., x ∗ (x\y) = y. In other words, Lx(z) = y
if and only if z = x\y. The element x\y may be read as “x dividing y” or “x backslash y”. The
operation \ on the set X is known as left division (that is, L−1x (y) = x\y = z) in the quasigroup
(X, ∗). The element x/y of X is defined as the unique solution z of the equation z ∗ y = x, i.e.,
(x/y) ∗ y = x. In other words, Ry(z) = x if and only if x/y. The element x/y may be read as
“x divided by y” or “x slash y”. The operation / on the set X is known as right division (that
is, R−1y (x) = x/y = z) in the quasigroup (X, ∗). A groupoid (X, ∗) is commutative means that
Ly(x) = Ry(x) for all x ∈ X.

Theorem 2.2 ([16]). If (X, ∗) is a quasigroup which is associative, then (X, ∗) necessarily has a
unique identity element4.

Therefore, with the exception of the empty quasigroup, each associative quasigroup is a group.
A quasigroup is Abelian if it is commutative and associative, so is either empty or an Abelian
group. Given an Abelian group (X, ∗), we remember that for an element a ∈ X, any other b ∈ X
is called inverse of a, denoted by b = a−1, when a ∗ b = b ∗ a = e.

Remark 2.1 ([19]). Let (X, ∗) be a group, considered as a quasigroup. Then x\y = x−1 ∗ y and
y/x = y ∗ x−1. When a nonempty quasigroup is Abelian, since the operator ∗ is commutative, for
any x, y in X, its left division x\y and right division y/x coincides and are denoted simply by y

x .

3 General quasi-overlap functions

In this section, the notion of general overlap functions will be extended to the context of lattices.
Moreover, a characterization and construction methods of general overlap functions are proposed.

Definition 3.1. Let X be a bounded lattice. The mapping GO : Xn −→ X is said to be a general
quasi-overlap function on X, if the following conditions hold:

(GO1) GO is symmetric;

(GO2) GO(x1, . . . , xn) = 0X if xi = 0X , for some i ∈ {1, . . . , n};

(GO3) GO(x1, . . . , xn) = 1X if xi = 1X , for all i ∈ {1, . . . , n};
3In the literature there are many nonequivalent definitions for groupoid. Here, a groupoid is an algebraic structure

(X, ∗) where X is a non-empty set and ∗ is a binary function defined on X.
4An element e is a left (right) identity element for quasigroup (X, ∗) means that Le(x) = x (Re(x) = x) ∀x ∈ X.
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(GO4) GO is increasing.

Example 3.1. (1) Let X be a bounded lattice and a ∈ X. The map GO : Xn −→ X given by

GO(x1, . . . , xn) =


n∧

i=1

xi if
∨n

i=1 xi ≤ a
n∨

i=1

xi otherwise
is a general quasi-overlap function on X. A

variant of this map given by GO(x1, . . . , xn) =


n∧

i=1

xi se xi ≤ a for each i = 1, . . . , n

n∨
i=1

xi otherwise

is also a general quasi-overlap function on X.

(2) Let X be a non-empty set and (℘(X),⊆) a lattice. The map GO : ℘(X)2 −→ ℘(X) given by

GO(X1, . . . , Xn) =

{
xi |xi =

n⋃
i=1

Xi −
n⋂

i=1

Xi

}
is a general quasi-overlap function on ℘(X).

A variant of this map given by GO(x1, . . . , xn) =


∅ if

n⋂
i=1

Xi = ∅
n⋃

i=1

Xi otherwise
, is also a general

quasi-overlap function on ℘(X).

(3) Let X be a non-empty set and F(X) the lattice of fuzzy sets on X, where the order considered
is the inclusion of fuzzy sets. If O : [0, 1]n −→ [0, 1] is a general quasi-overlap function, then
the map GO(A1, . . . , An) = {(x,O(A1(x), . . . , An(x))) |x ∈ X} is a general quasi-overlap
function on F(X).

Theorem 3.1. Let ⊕ and ⊗ be two increasing binary operations on a bounded lattice X, such that
⊗ distributes over ⊕. Suppose that (X,⊕, 0X) is a quasigroup with identity element 0X , (X,⊗, 1X)
is an Abelian quasigroup and 0X is annihilator5 of ⊗. The n-ary function GO : Xn −→ X is a
general quasi-overlap function if and only if

GO(x1, . . . , xn) =
f(x1, . . . , xn)

f(x1, . . . , xn)⊕ g(x1, . . . , xn)
(1)

for some f, g : Xn −→ X such that

(i) f and g are symmetric;

(ii) f(x1, . . . , xn) = 0 if xi = 0X , for some i ∈ {1, . . . , n};

(iii) g(x1, . . . , xn) = 0 if xi = 1X , for all i ∈ {1, . . . , n};

(iv) f is increasing and g is decreasing;

(v) f(x1, . . . , xn)⊕ g(x1, . . . , xn) 6= 0X .

Proof. (⇒) Suppose that GO is a general quasi-overlap function and take f(~x) = GO(~x). By
Theorem 2.1, for each ~x ∈ Xn and any u ∈ X, there is an unique v ∈ X that satisfies the equation
GO(~x) ⊕ v = u (*). Define g the function that associates the only v ∈ X that satisfies (*) with
each ~x ∈ Xn. In particular, if xi = 1X , for all i ∈ {1, . . . , n}, then g(1X , . . . , 1X) = 1X\1X = 0X
and GO(~x) ⊕ g(~x) = 1X 6= 0X . Thus, the function GO(~x) = f(~x)

f(~x)⊕g(~x) is well defined. Moreover,

5For all x ∈ X, x⊗ 0X = 0X ⊗ x = 0X .
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one easily verifies that conditions (i), (iii) and (v) hold. For condition (ii), if xi = 0X , for some

i ∈ {1, . . . , n}, then 0X = f(~x)
f(~x)⊕g(~x) if and only if 0X ⊗ [f(~x)⊕ g(~x)] =

[
f(~x)

f(~x)⊕g(~x)

]
⊗ [f(~x)⊕ g(~x)].

As 0X is annihilator of ⊗, the conclusion follows easily. For condition (iv), as f is increasing,
~x ≤comp ~y implies f(~x) ≤X f(~y). Likewise, as ⊗ is commutative and increasing, it follows that

g(~y) = f(~y)\1X
= f(~y)−1 ⊗ f(~x)−1 ⊗ f(~x)

= [f(~x)⊗ f(~y)]−1 ⊗ f(~x)

≤X [f(~x)⊗ f(~y)]−1 ⊗ f(~y)

= f(~y)−1 ⊗ f(~x)−1 ⊗ f(~y)

= f(~x)−1 ⊗ f(~y)−1 ⊗ f(~y)

= f(~x)−1 ⊗ 1X

= f(~x)\1X
= g(~x).

(⇐) Consider f, g : Xn −→ X satisfying the conditions (i)–(v). We show that the map of Equation
(1) is a general quasi-overlap function on X. It is immediate that GO is symmetric (GO1). Let us
prove that the conditions (GO2), (GO3) and (GO4) hold. Let ~x ∈ Xn be such that xi = 0X for
some i ∈ {1, . . . n}. Due to conditions (ii) and (v), it holds that f(~x) = 0X and f(~x)⊕ g(~x) 6= 0X .
Consequently, GO(~x) = 0X . Similarly, let ~x ∈ Xn be such that xi = 1X for all i ∈ {1, . . . n}.
Due to conditions (iii) and (v), it holds that g(~x) = 0X and f(~x) ⊕ g(~x) 6= 0X . Consequently,

GO(~x) = f(~x)
f(~x) = 1X . Finally, let us see that (GO4) also holds. Consider ~x, ~y ∈ Xn. Without

loss of generality, suppose that ~x ≤comp ~y. Due to condition (iv), it holds that f(~x) ≤X f(~y) and
g(~y) ≤X g(~x). Similarly, we find that f(~x) ⊗ g(~y) ≤X f(~y) ⊗ g(~x). Since ⊕ also is increasing, it
follows that [f(~x) ⊗ f(~y)] ⊕ [f(~x) ⊗ g(~y)] ≤X [f(~x) ⊗ f(~y)] ⊕ [f(~y) ⊗ g(~x)]. As ⊗ distributes over
⊕, one has that f(~x)⊗ (f(~y)⊕ g(~y)) ≤X f(~y)⊗ (f(~x)⊕ g(~x)). Therefore, as (X,⊗) is an Abelian

quasigroup, GO(~x) = f(~x)
f(~x)⊕g(~x) ≤X

f(~y)
f(~y)⊕g(~y) = GO(~y).

Theorem 3.2. Let X be a totally ordered bounded lattice and F : Xn −→ X a symmetric aggre-
gation function. If F (x1, . . . , xn) ≤X min(x1, . . . , xn), then F is a general quasi-overlap function.

Proof. Since F is symmetric, (GO1) is satisfied. Since F is an aggregation function, by bound-
ary condition (GO3) is satisfied. Also, it follows that F is increasing and so (GO4) is satisfied.
Moreover, if xi = 0X , for some i ∈ {1, . . . , n}, then F (x1, . . . , xn) ≤X min(x1, . . . , xn) = 0X . Thus
F (x1, . . . , xn) = 0X , hence (GO2) is satisfied. Thus, F is a general overlap function on X.

Theorem 3.3. Let X be a totally ordered bounded lattice, ψ : X −→ X be an increasing function
satisfying ψ(0X) = 0X and ψ(1X) = 1X . Moreover, let F : Xn −→ X be a symmetric aggregation
function. If ψ(F (1X , . . . , 1X , t, 1X , . . . , 1X)) ≤X t, for all t ∈ X, and at any position, then GO =
ψ ◦ F is a general quasi-overlap function.

Proof. For any fixed position i, and any ~x = (x1, . . . , xn) we have GO(~x) ≤X max
xj∈X,j 6=i

GO(~x) =

GO(1X , . . . , 1X , xi, 1X , . . . , 1X) ≤X xi. This holds for every i, thus GO(~x) ≤X min(~x). By applying
Theorem 3.2 we complete the proof.

Theorem 3.4. Let X be a bounded lattice and ρ1, . . . , ρn, ψ : X −→ X strictly increasing bijec-
tions. For any general quasi-overlap function GO, the mapping

G̃O(x1, . . . , xn) = ψ

(
GO
(
ρ1(x1), . . . , ρn(xn)

))
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is a general quasi-overlap function.

Proof. The property (GO1): G̃O is symmetric, since GO is symmetric. The property (GO4), it
follows from the fact that the mappings ρ1, . . . , ρn, ψ are strictly increasing and GO is increasing.
As for the properties (GO2) and (GO3), they follow from the fact that for all strictly increasing
bijection ϕ : X −→ X one has that ϕ(x) = 0X if and only if x = 0X and ϕ(x) = 1X if and only
if x = 1X . Indeed, since ϕ is surjective, there are u,w ∈ X such that ϕ(u) = 0X and ϕ(w) = 1X .
Obviously, if 0X <X u and w <X 1X , as ϕ is strictly increasing, we have the contradictions
ϕ(0X) <X ϕ(u) = 0X and ϕ(w) = 1X <X ϕ(1X). Thus u = 0X and w = 1X . Moreover, if
ϕ(0X) = m, where 0X < m, then since ϕ is bijection, there is n ∈ X such that 0X <X n and
ϕ(n) = 0X . Hence, ϕ(n) <X ϕ(0X), which contradicts the fact that ϕ is strictly increasing.
Similarly, if ϕ(1X) = s, where s < 1X , then since ϕ is bijection, there is r <X 1X such that
ϕ(r) = 1X . Hence, ϕ(1X) <X ϕ(r), obviously another contradiction. Hence, since GO is general
quasi-overlap function, if xi = 0X for some i ∈ {1, . . . , n}, it follows that ρi(xi) = 0X , which

implies that GO
(
ρ1(x1), . . . , ρn(xn)

)
= 0X and so ψ

(
GO
(
ρ1(x1), . . . , ρn(xn)

))
= 0X . Therefore,

G̃O(x1, . . . , xn) = 0X . On the other hand, if xi = 1X for all i ∈ {1, . . . , n}, it follows that ρi(xi) =

1X , which implies that GO
(
ρ1(x1), . . . , ρn(xn)

)
= 1X . Then ψ

(
GO
(
ρ1(x1), . . . , ρn(xn)

))
= 1X ,

which implies that G̃O(x1, . . . , xn) = 1X .

4 Final remarks

In this paper we have studied the concept of general quasi-overlap function on lattices. We
have proved a characterization theorem and some construction methods for these functions. In [9],
Dimuro et al. proposes some generalizations of the standard form of the Choquet Integral and
among these generalizations, one uses a particular type of aggregation functions, called overlap
functions, which are a particular class of quasi-overlap functions. In this perspective, for future
research, we propose a generalization of the standard form of the Choquet integral, using general
quasi-overlap functions on lattices, in order to obtain applications in many areas, such as in de-
cision making and multi-criteria decision making or multi-criteria preferences, especially for the
applications of discrete Choquet integrals in fuzzy rule-based classification systems and ensembles
of classifiers.
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