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15385-000, Ilha Solteira, SP

E-mail: pedrocardin@mat.feis.unesp.br.

Keywords: Filippov systems, singular perturbation, tangency points

Abstract. In this article we deal with singularly perturbed vector fields Zε expressed by

ẋ =

{
F (x, y, ε) if h(x, y, ε) ≤ 0,
G(x, y, ε) if h(x, y, ε) ≥ 0,

εẏ = H(x, y, ε), (1)

where ε ∈ R is a small parameter, x ∈ Rn, n ≥ 2, and y ∈ R denote the slow and fast variables,
respectively, and F , G, h and H are smooth maps. We study the effect of singular perturbations
at typical singularities of Z0. Special attention will be dedicated to those points satisfying
q ∈ {h(x, y, 0) = 0} ∩ {H(x, y, 0) = 0} where F or G is tangent to {h(x, y, 0) = 0}. The
persistence and the stability properties of those objects are investigated.

1 Introduction

Let U ⊂ Rn be an open set. We denote by Cr(U,Rn) the set of all vector fields of class Cr

defined on U , with r ≥ 1, endowed with the Cr–topology. The simplest case of a Filippov system
is when the phase space is composed by two domains such that for each domain a different ODE
(ordinary differential equation) governs the dynamics, namely

ẋ = Z(x) =

{
F (x) if h(x) ≤ 0,
G(x) if h(x) ≥ 0.

(2)

In equation (2), F,G ∈ Cr(U,Rn) and h : U → R is a smooth function having 0 ∈ R as
a regular value. The common boundary M = {x ∈ U | h(x) = 0} between the domains
M− = {x ∈ U | h(x) ≤ 0} and M+ = {x ∈ U | h(x) ≥ 0} is called switching manifold. We will
use the notation Z = (F,G) to represent the Filippov system (2) and denote by Ωr(U) the set
of all vector fields Z of the form (2) defined on U .

We also use Fh(p) = F (p) · ∇h(p) for the scalar product in Rn between the vector field
F : U → Rn and the gradient of the function h : U → R.

On the switching manifold M the following open sets are distinguished:

• Sewing region: M1 = {p ∈M : [Fh(p)][Gh(p)] > 0};

• Escaping region: M2 = {p ∈M : Fh(p) < 0, Gh(p) > 0};

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.
Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014.

DOI: 10.5540/03.2015.003.01.0002 010002-1 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0002


• Sliding region: M3 = {p ∈M : Fh(p) > 0, Gh(p) < 0}.

The definitions of these three regions exclude the so-called tangency points, that is, points
where one of the two vector fields F or G is tangent to M. They are characterized by p ∈ M
such that Fh(p) = 0 or Gh(p) = 0. Generically speaking, these points are on the boundary of
the regionsM1,M2 andM3, which we denote by ∂M1, ∂M2 and ∂M3, respectively. Tangency
points include the case F (p) = 0 or G(p) = 0, that is, when one of the two vector fields has an
equilibrium point at M. We define two types of tangency between a smooth vector field and
a manifold, which will be used in paper. We say that a smooth vector field F has a fold or
quadratic tangency withM = {h(x) = 0} at a point p ∈M provided Fh(p) = 0 and F 2h(p) 6= 0.
A smooth vector field F has a cusp or cubic tangency with M = {h(x) = 0} at a point p ∈ M
provided Fh(p) = F 2h(p) = 0, F 3h(p) 6= 0, and the set {∇h(p),∇(Fh)(p),∇(F 2h)(p)} is
linearly independent.

If a point of the phase space which is moving on an orbit of Z = (F,G) falls ontoM1 then it
crossesM1 over to another part of the space. InM2 andM3, the definition of the local orbit is
given by the Filippov convention [3]. We consider the vector field fs which is the linear convex
combination of F and G tangent to M, that is

ẋ = fs(x) =
[∇h(x)F (x)]G(x)− [∇h(x)G(x)]F (x)

∇h(x)[F (x)−G(x)]
. (3)

We call fs the sliding vector field associated to the Filippov system (2), independently whether it
is defined in the sliding or escaping region. Solutions of Z = (F,G) through points ofM2 ∪M3

follow the orbit of fs. The singularities of a Filippov vector field (2) are

• p ∈M± such that p is an equilibrium of F or G, that is, F (p) = 0 or G(p) = 0, respectively;

• p ∈M2 ∪M3 such that p is an equilibrium of fs, that is, fs(p) = 0;

• p ∈ ∂M1 ∪ ∂M2 ∪ ∂M3, that is, the tangency points (Fh(p) = 0 or Gh(p) = 0).

Fenichel (see [2, 4]) proved that, in smooth dynamical systems, any structure which persists
under regular perturbation also persists under singular perturbation. In [1] we extended this
theory for the sliding vector field associated to the reduced problem of (11), that is, we study
how sliding mode in Filippov systems is affected by singular perturbations. Now we analyze the
effect of singular perturbations at the tangency points.

For each ε ≥ 0 we will denote by Mε and Sε the sets Mε = {h(x, y, ε) = 0} and Sε =
{H(x, y, ε) = 0}. Note thatMε is the switching manifold. The set S0 is called the slow manifold
of the singular perturbation problem (1). Here we are supposing thatM0 and S0 are in general
position, i.e., ∇h(p) and ∇H(p) are linearly independent for any p ∈M0 ∩S0. Throughout this
article we will assume that the equation H(x, y, ε) = 0 can be solved by y = fε(x), for all ε ≥ 0.

For ε = 0 in (1) we have the so–called reduced problem

ẋ =

{
F̃ (x) if h̃(x) ≤ 0,

G̃(x) if h̃(x) ≥ 0,
0 = H(x, y, 0), (4)

where F̃ (x) = F (x, f0(x), 0), G̃(x) = G(x, f0(x), 0) and h̃(x) = h(x, f0(x), 0). The reduced
problem (9) is a dynamical system defined on the manifold S0. For ε 6= 0 we can express system
(1) in the general form given in (2), namely

(ẋ, ẏ) =

{
F (x, y, ε) if h(x, y, ε) ≤ 0,

G(x, y, ε) if h(x, y, ε) ≥ 0,
(5)
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where F (x, y, ε) = (F,H/ε) and G(x, y, ε) = (G,H/ε). We will use the notation Zε = (F ,G) to
represent the Filippov slow-fast system and Z0 to represent the reduced problem. We say that
system (1) is locally simple at p = (x0, y0, 0) ∈ Rn+1 × R if one of the following conditions is
satisfied:

a) ∂h
∂x(p) 6= 0 and h(x0, y, 0) = 0, for all y close to y0, or;

b) there exists a neighborhood U of (x0, y0) in Rn+1 such that ∂H
∂x (q) = 0, for all q ∈ U ∩Mε.

2 Fold, Cusp and Hyperbolic Singularities

We say that p ∈M is a fold–regular singularity of (2) provided Fh(p) = 0 and F 2h(p) 6= 0 and
Gh(p) 6= 0 or Gh(p) = 0 and G2h(p) 6= 0 and Fh(p) 6= 0. Moreover:

i) In the first case, we say that the fold–regular singularity p ∈ M is visible if F 2h(p) < 0
and invisible if F 2h(p) > 0.

ii) In the second case, it is visible provided G2h(p) > 0 and invisible provided G2h(p) < 0.

Let p ∈ M be a fold–fold singularity of (2), i.e., both vector fields F and G have a fold or
quadratic tangency at the same point p ∈M. We distinguish the following cases:

i) Elliptic case: F 2h(p) > 0 and G2h(p) < 0 (invisible two–fold).

ii) Parabolic case: F 2h(p) < 0 and G2h(p) < 0 (visible fold – invisible fold) or F 2h(p) > 0
and G2h(p) > 0 (invisible fold – visible fold).

iii) Hyperbolic case: F 2h(p) < 0 and G2h(p) > 0 (visible two–fold).

Theorem 2.1. Let Zε(x, y) be a Cr family defined by (1), with r ≥ 2. Consider p = (p, f0(p), 0) ∈
S0∩M0 a fold–regular singularity of the reduced problem Z0 and suppose that Zε is locally simple
at p. Then there exists ε1 > 0 such that:

(i) There is a Cr−1 family {pε : ε ∈ (−ε1, ε1)} such that p0 = p and pε is a fold–regular
singularity of Zε;

(ii) If p is a visible (resp. invisible) fold–regular of Z0 then pε is a visible (resp. invisible)
fold–regular of Zε.

Proof. Suppose that the system is locally simple at p = (p, f0(p), 0) ∈ S0 ∩ M0. Then, the
following relations are valid

F̃ ih̃(p) = F ih(p, f0(p), 0) and G̃ih̃(p) = Gih(p, f0(p), 0),

for all i ∈ N.
We suppose that p = (p, f0(p), 0) is a fold for the vector field F̃ and regular for G̃. The

opposite case is similar. The fold–regular point p satisfies the following conditions

F̃ h̃(p) = 0, F̃ 2h̃(p) 6= 0 and G̃h̃(p) 6= 0.

Since Zε is locally simple at p these conditions are equivalent to

Fh(p) = 0, F 2h(p) 6= 0 and Gh(p) 6= 0.

On the other hand, for each ε 6= 0 small, the vector field F (x, y, ε) = (F,H/ε) has a tangency
at a point q if, and only, if such point satisfies the equation Fh(x, y, ε) = 0, that is equivalent to

Fh(x, y, ε) +
∂h

∂y

H

ε
(x, y, ε) = 0. (6)
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In order to obtain a family pε of tangency points such that p0 = p we need to solve the equation
(6) restricted to manifold y = fε(x). Since H(x, fε(x), ε) = 0, it is enough to solve the following
equation

Fh(x, fε(x), ε) = 0.

We have that F 2h(p, f0(p), 0) 6= 0. But, F 2h = F (Fh) = ∂(Fh)
∂x · F , so, in particular,

∂(Fh)

∂x
(p, f0(p), 0) 6= 0.

By the Implicit Function Theorem, for each ε 6= 0 sufficiently small, there exists a unique
x = x(ε) such that Fh(x(ε), fε(x(ε)), ε) = 0. Take pε = (x(ε), fε(x(ε)), ε). Thus, pε is a family
of tangency points of Zε such that p0 = p.

For pε be a fold–regular singularity of Zε, we need to prove that[
F · ∂

∂x

(
∂h

∂x
· F +

∂h

∂y

H

ε

)
+
H

ε

∂

∂y

(
∂h

∂x
· F +

∂h

∂y

H

ε

)]
(pε) 6= 0

and (
∂h

∂x
·G+

∂h

∂y

H

ε

)
(pε) 6= 0.

As before, since we are restricted to manifold y = fε(x) and H(x, fε(x), ε) = 0, these two
conditions are summarized to

F 2h(pε) 6= 0 and Gh(pε) 6= 0.

As p = (p, f0(p), 0) is a fold–regular singularity of Z0 we have that F̃ 2h̃(p) = F 2h(p, f0(p), 0) 6= 0
and G̃h̃(p) = Gh(p, f0(p), 0) 6= 0. By continuity of the functions F 2h and Gh, follows that
F 2h(q) 6= 0 and Gh(q) 6= 0 for all q in a given neighborhood of p. In particular, for each ε 6= 0
sufficiently small, F 2h(pε) 6= 0 and Gh(pε) 6= 0, i.e., pε is a fold–regular singularity of Zε.

In order to prove the item (ii), suppose that the fold–regular p is visible. So, F̃ 2h̃(p) =
F 2h(p, f0(p), 0) < 0. Again, by continuity, we can conclude that F 2h(pε) < 0, for each ε 6= 0
sufficiently small, i.e., pε is a visible fold–regular singularity of Zε. Similarly, if p is an invisible
fold–regular of Z0, then pε will also be an invisible fold–regular of Zε.

We investigated the effect of singular perturbations at tangency points. We can prove that
singularities of the kind fold are robust with respect to singular perturbations. On the other
hand, cusp singularities are not robust with respect to singular perturbations. We also study
the unfolding of cusp singularities and hyperbolic equilibria. In short, with the same techniques
used in Theorem 2.1, we can prove that:

• for any n ≥ 2, fold–regular singularities are persistent;

• for n = 2, cusp–regular singularities are not persistent but for n ≥ 3 they are so;

• for n = 2, fold–fold singularities are not persistent but for n ≥ 3 they are so;

• for n = 2, 3, fold–cusp singularities are not persistent but for n ≥ 4 they are so;

• for n = 2, hyperbolic/equilibrium–regular singularities are not persistent.

3 Singularly Perturbed Non-Smooth Systems

First of all, we introduce the notation.

Sε : ẋ =

{
F−(x, y, ε), if h(x, y) ≤ 0
F+(x, y, ε), if h(x, y) ≥ 0

εẏ = G(x, y, ε), (7)
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where x = (x1, .., xn) ∈ Rn, y ∈ R, ε is a small positive parameter, F∓, G and h are Cr functions,
with r ≥ 1. The second one is given by system of kind

S∗ε : εẋ =

{
f−(x, y, ε), if h(x, y) ≤ 0
f+(x, y, ε), if h(x, y) ≥ 0

ẏ = g(x, y, ε), (8)

where x ∈ R, y ∈ Rn, f∓, g = (g1, ..., gn) and h are Cr functions, with r ≥ 1.

The singularly perturbed non-smooth systems which we consider here are systems given on
the forms Sε or S∗ε . For ε = 0 in Sε and S∗ε , we have the reduced systems given respectively by

S0 : ẋ =

{
F−(x, y, 0), if x1 ≤ 0
F+(x, y, 0), if x1 ≥ 0

0 = G(x, y, 0).

S∗0 : 0 =

{
f−(x, y, 0), if x1 ≤ 0
f+(x, y, 0), if x1 ≥ 0

ẏ = g(x, y, 0).

Denote Mε = {(x, y) : G(x, y, ε) = 0} and M∓ε = {(x, y) : f∓(x, y, ε) = 0}. The sets M0,
M−0 and M+

0 are called critical manifolds. The timescale τ = t/ε transforms the systems Sε
and S∗ε in the systems

x′ =

{
εF−(x, y, ε), if x1 ≤ 0
εF+(x, y, ε), if x1 ≥ 0

y′ = G(x, y, ε). (9)

x′ =

{
f−(x, y, ε), if x1 ≤ 0
f+(x, y, ε), if x1 ≥ 0

y′ = εg(x, y, ε). (10)

We say that a compact K ⊂ M0 is normally hyperbolic if the real parts of the eigenvalues
of Gy(x, y, 0) are nonzero, for all (x, y) ∈ K. The system Sε and S∗ε are called slow systems
and the systems (9) and (10) are called fast systems. In both cases, for ε > 0, the slow and
fast systems have the same phase-portrait. For ε = 0 the systems (9) and (10) are called layer
problems. We can note that S0 is defined in M0 which has a (n − 1)- dimensional switching
manifold represented by Σr = Σ ∩M0 and the crossing, sliding and escaping regions are given
by Σc

r = Σc ∩M0, Σs
r = Σs ∩M0 and Σe

r = Σe ∩M0. If we suppose

∀(x, y) ∈M0 : DyG(x, y, 0) 6= 0,

∀(x, y) ∈M−0 ∪M
+
0 : Dxf

∓(x, y, 0) 6= 0,

then y = ψ(x) locally parametrize M0 by solving G(x, y, 0) = 0 and x = ξ∓(y) locally parame-
trize M−0 ∪M

+
0 by solving f∓(x, y, 0) = 0.

In what follows, we define the regularization for systems S0, S∗0 , Sε and S∗ε . The regularization
of systems S0 and S∗0 are defined respectively by

Sλ,0 : ẋ =
F+ + F−

2
+ ϕ

(x1

λ

) F+ − F−

2
, G = 0,

S∗λ,0 :
f+ + f−

2
+ ϕ

(x
λ

) f+ − f−

2
= 0, ẏ = g,

where ϕ is a transition function and the other functions are valued at (x, y, 0). The regularizati-
ons of systems Sε and S∗ε are the 2-parameters system families Sλ,ε and S∗λ,ε defined respectively
by

Sλ,ε : ẋ =
F+ + F−

2
+ ϕ

(x1

λ

) F+ − F−

2
, εẏ = G,

S∗λ,ε : εẋ =
f+ + f−

2
+ ϕ

(x
λ

) f+ − f−

2
, ẏ = g,

where ϕ is a transition function and the other functions are valued at (x, y, ε).
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4 Closed Poly–trajectories

Definition 4.1. Consider n = 2.

(i) A curve Γ is a closed poly-trajectory if Γ is closed and the following conditions are
satisfied.

• Γ contains arcs of at lest two of X−|Σ−, X+|Σ+ and XΣ.

• The transition between arcs of X− and arcs of X+ happens in crossing points (and
vice versa).

• The transition between arcs of X− (or X+) and arcs of XΣ happens through either
fold points or regular points in the sliding or escaping region, respecting orientation.

(ii) Let Γ be a closed poly-trajectory. We say that

• Γ is a crossing poly-trajectory if Γ meets Σ just in crossing points.

• Γ is a sliding poly-trajectory if Γ contains at least a fold point.

(iii) Let Γ be a closed poly-trajectory. We say that Γ is hyperbolic if

• Γ is a crossing poly-trajectory and η
′
(p) 6= 1 where η is the first return map defined

on a segment N with p ∈ N t γ;

• Γ is a sliding poly-trajectory and all arcs of FΣ are sliding or all are escaping.

Theorem 4.1. Fix n = 2. Suppose that S0 has a hyperbolic crossing or sliding poly-trajectory
Γ0.

(a) For small λ > 0 the regularized system Sλ,0 has a hyperbolic limit cycle Γλ,0, such that
Γλ,0 → Γ0 when λ→ 0, according to Hausdorff distance.

(b) If Γ0 is normally hyperbolic, then for small ε, λ > 0, the regularized system Sλ,ε has
a hyperbolic limit cycle Γλ,ε, such that Γλ,ε → Γ0, when (λ, ε) → (0, 0), according to
Hausdorff distance.

(c) If Γ0 is normally hyperbolic then the non-smooth system Sε has a closed poly-trajectory
Γε, for small values of ε > 0.

Theorem 4.2. Consider system S∗ε satisfying h(x, y) = x, f−(0, y, 0) = f+(0, y, 0) and f−(0, y, ε) 6=
f+(0, y, ε), for any ε > 0. Let P = (0, ȳ) be an equilibrium point of reduced problem S∗0 on Σ,
i.e., g(0, ȳ, 0) = 0.

(a) If there exist C ⊂ Rn neighborhood of ȳ and small ε0 > 0 such that f−(0, y, ε)f+(0, y, ε) < 0
for ε ∈ (−ε0, ε0), then there exists a continuous family Pε such that

• Pε is an equilibrium point of the sliding vector field associated to system S∗ε ;

• P0 = P ;

• P0 is an equilibrium point of the regularized system S∗λ,0;

• the sliding vector field around Pε is topologically equivalent to

B(0, ȳ, 0) =

 g1
y1(0, ȳ, 0) . . . g1

yn(0, ȳ, 0)
...

...
...

gny1(0, ȳ, 0) . . . gnyn(0, ȳ, 0)

 .

(b) There exist a small ε1 > 0 and a continuous family Qε, with ε ∈ (−ε1, ε1) such that
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• Q0 = P ;

• Qε is an equilibrium point of the regularized system S∗λ,ε.

Now, we add a discontinuity at function g and we suppose that h does not depend of variable
x. We get the following system

εẋ =

{
f−(x, y, ε), if h(y) ≤ 0
f+(x, y, ε), if h(y) ≥ 0

, ẏ =

{
g−(x, y, ε), if h(y) ≤ 0
g+(x, y, ε), if h(y) ≥ 0.

(11)

We suppose that the condition

f−(x, y, ε) = f+(x, y, ε),∀(x, y) ∈ Σ = {h = 0},∀ε ≥ 0

is satisfied and f∓(x, y, ε) = 0 can be solved by x = ξ∓ε (y), locally, for all ε ≥ 0. Thus, the
reduced system becomes a non-smooth system given by

ẏ =

{
g−(ξ−0 (y), y, 0), if h(y) ≤ 0
g+(ξ+

0 (y), y, 0), if h(y) ≥ 0
. (12)

We say that a point p ∈M−0 ∩M
+
0 ∩Σ satisfy the propriety P if there exists a neighborhood

V of p, such that

f−(q, ε) = f+(q, ε) and f∓y (q) = 0, ∀q ∈ V ∩M−ε ∩M+
ε .

Theorem 4.3. Let N ⊂ M0 be a normally hyperbolic equilibrium point or periodic orbit of
the reduced system (12) with a js-dimensional local stable manifold W s and a ju-dimensional
local unstable manifold W u. Suppose that N satisfies the propriety P. Thus, there exists an
ε-continuous family Nε such that

(i) N0 = N ;

(ii) Nε is a hyperbolic equilibrium point or periodic orbit of sliding vector field associated to sys-
tem (11), with a (js+ks)-dimensional local stable manifold N s

ε and a (ju+ku)-dimensional
local unstable manifold N s

ε .
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