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15385-000, Ilha Solteira, SP

E-mail: pedrocardin@mat.feis.unesp.br,

Paulo Ricardo da Silva
Departamento de Matemática, IBILCE, UNESP,
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Abstract: In this work we study three time scale singular perturbation problems

εx′ = f(x, ε, δ), y′ = g(x, ε, δ), z′ = δh(x, ε, δ),

where x = (x, y, z) ∈ Rn × Rm × Rp, ε and δ are two independent small parameter (0 < ε,
δ ≪ 1), and f , g, h are Cr functions, with r ≥ 1. We establish conditions for the existence
of compact invariant sets (singular points, periodic and homoclinic orbits) when ε, δ > 0. Our
main strategy is to consider three time scales which generate three different limit problems.

Keywords: Singular perturbations problems, three time scales

In this work we study systems with three distinct time–scales. These systems are in general
written in the form

εx′ = f(x, ε, δ), y′ = g(x, ε, δ), z′ = δh(x, ε, δ), (1)

where x = (x, y, z) ∈ Rn × Rm × Rp, ε and δ are two independent small parameter (0 < ε,
δ ≪ 1), and f , g, h are Cr functions, where r is big enough for our purposes. In system (1) th-
ree different time–scales can be derived: a slow time–scale t, an intermediate time–scale τ1 :=

t
δ

and a fast time–scale τ2 :=
τ1
ε .

Example. Examples of models involving three time–scales are for instance found in food chain
models with a third class of so–called super or top-predators ([7], [1] and [2]) or in hormone
secretion models ([5]). For instance, the Rosenzweig–MacArthur model ([8]) for tritrophic food
chains (as proposed by [1])

εx′ = x

(
1− x− y

x+ b1

)
, y′ = y

(
x

x+ b1
− d1 −

z

y + b2

)
, z′ = δz

(
y

y + b2
− d2

)
, (2)

is an example of a problem involving three different time–scales. It is composed of a logistic
prey x, a Holling type II predator y and a Holling type II top–predator z. Models with three
or more time–scales are also used to study neuronal behavior, in particular to explain firing of
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neurons or so–called mixed mode oscillations (see [4], [6]).

In this work we develop a mathematical theory in order to study systems (1). Our main
goal is to build a theory, inspired by the one given by Fenichel in [3], for systems involving three
different time–scales.

1 Statement of the main results

The system (1) is written with respect to the time–scale τ1 so it is called intermediate system.
By transforming (1) to the slow and fast variables t and τ2 we obtain, respectively, the slow
system

εδx′ = f(x, ε, δ), δy′ = g(x, ε, δ), z′ = h(x, ε, δ), (3)

and the fast system

x′ = f(x, ε, δ), y′ = εg(x, ε, δ), z′ = εδh(x, ε, δ). (4)

Remark. To simplify our notation, we will use the notation x′ to indicate the derivative with
respect to the three time scales. More specifically, for the systems (1), (3) and (4), x′ indicates
the derivatives dx

dτ1
, dxdt and dx

dτ2
, respectively.

Note that, for ε, δ ̸= 0, systems (1), (3) and (4) are equivalent. By setting ε = δ = 0 in
(1), (3) and in (4) we obtain three systems with dynamics essentially different: the intermediate
problem

0 = f(x, 0, 0), y′ = g(x, 0, 0), z′ = 0, (5)

the reduced problem

0 = f(x, 0, 0), 0 = g(x, 0, 0), z′ = h(x, 0, 0), (6)

and the layer problem
x′ = f(x, 0, 0), y′ = 0, z′ = 0. (7)

For each ε and δ, consider the following sets

Sδ
1 = {x ∈ Rn+m+p : f(x, 0, δ) = 0}

and
Sε
2 = {x ∈ Rn+m+p : f(x, ε, 0) = g(x, ε, 0) = 0}.

Note that the intermediate and reduced problems (5) and (6) are dynamical systems defined
on S0

1 and S0
2 , respectively. On the other hand S0

1 is a manifold of singular points for (7). In
what follows we refer to S0

1 and S0
2 as the intermediate and slow manifolds, respectively. The

reason for these names is that on S0
1 the intermediate time–scale is dominating and on S0

2 the
slow time–scale predominates.

Following the ideas of the geometric singular perturbation theory [3], our goal will be to
prove that one can obtain information on the dynamics of the system (1), for small values of ε
and δ, by suitably combining the dynamics of the three limit problems (5), (6) and (7).

Four other systems will also play an important role in our analysis of system (1). By setting
ε = 0 in (1) (or in (3)) and in (4) while keeping δ fixed but nonzero, we obtain the δ–intermediate
problem

0 = f(x, 0, δ), y′ = g(x, 0, δ), z′ = δh(x, 0, δ), (8)

and the δ–layer problem
x′ = f(x, 0, δ), y′ = 0, z′ = 0. (9)
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By setting δ = 0 in (1) (or in (4)) and in (3) while keeping ε fixed but nonzero, we obtain the
ε–intermediate problem

εx′ = f(x, ε, 0), y′ = g(x, ε, 0), z′ = 0, (10)

and the ε–reduced problem

0 = f(x, ε, 0), 0 = g(x, ε, 0), z′ = h(x, ε, 0). (11)

Note that when both ε, δ → 0, the two δ, ε–intermediate problems (8) and (10) become the same
limit problem (5). The problems (8) and (11) are dynamical systems defined on the manifolds Sδ

1

and Sε
2 , respectively. On the other hand, Sδ

1 and Sε
2 are sets of singular points for the problems

(9) and (10), respectively.

Definition 1.1. We say that system (1) is normally hyperbolic at x0 ∈ S0
2 if the real parts of

the eigenvalues of the Jacobian matrix(
D1,2 f(x0, 0, 0)
D1,2 g(x0, 0, 0)

)
are nonzero. We say that system (1) is δ–normally hyperbolic at x0 ∈ Sδ

1 if the real parts of the
eigenvalues of the Jacobian D1 f(x0, 0, δ) are nonzero.

Now we are in position to state our main results.

Theorem A. Consider the Cr family (1). Let N ⊆ S0
2 be a j-dimensional compact normally

hyperbolic invariant manifold of the reduced problem (6) Then there are ε1 > 0 and δ1 > 0 and a
Cr−1 family of manifolds {N ε

δ : δ ∈ (0, δ1), ε ∈ (0, ε1)} such that N 0
0 = N and N ε

δ is a hyperbolic
invariant manifold of (1).

Proof. Firstly we use Fenichel’s first theorem to study the persistence ofN under δ–perturbations
of the system (8). Fenichel’s first theorem states that the compact normally hyperbolic invari-
ant manifold N of the reduced problem (6) persists, for δ ̸= 0 small, as an invariant manifold
Nδ for the system (8). More precisely, there exists δ1 > 0 and a Cr−1 family of manifolds
{Nδ : δ ∈ (−δ1, δ1)} such that N0 = N and Nδ is a hyperbolic invariant manifold of (8). Now,
for each δ fixed, we use again the Fenichel’s Theory to study the persistence of Nδ under ε–
perturbations of the system (1). Note that the system (8) corresponds to the reduced problem
associated to the system (1). Fenichel’s first theorem says that the compact δ–normally hyper-
bolic invariant manifold Nδ of (8) persists, for ε ̸= 0 sufficiently small, for the system (1), that
is, there exists ε1 > 0 and a Cr−1 family of manifolds {N ε

δ : ε ∈ (−ε1, ε1)} such that N 0
δ = Nδ

and N ε
δ is a hyperbolic invariant manifold of (1). This complete the proof of Theorem A.

Consider system (8) supplemented by the trivial equation δ′ = 0

0 = f(x, 0, δ), y′ = g(x, 0, δ), z′ = δh(x, 0, δ), δ′ = 0. (12)

Let G(x, δ) := (g(x, 0, δ), δh(x, 0, δ), 0) be the vector field defined by (12). Assume that the
linearization of G at points (x, 0), such that x ∈ S0

2 , has k
s eigenvalues with negative real part

and ku eigenvalues with positive real part. The corresponding stable and unstable eigenspaces
have dimensions ks and ku, respectively.

Similarly, consider system (4) supplemented by the trivial equation ε′ = 0

x′ = f(x, ε, δ), y′ = εg(x, ε, δ), z′ = εδh(x, ε, δ), ε′ = 0. (13)

Let H(x, ε, δ) := (f(x, ε, δ), εg(x, ε, δ), εδh(x, ε, δ), 0) be the vector field defined by (13). Assume
that the linearization of H at points (x, 0, δ), such that x ∈ Sδ

1 , has ls and lu eigenvalues with
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negative and positive real parts, so that the corresponding stable and unstable eigenspaces have
dimensions ls and lu, respectively.

Theorem B. Under the hypotheses of Theorem A, suppose that N has a (j + js)–dimensional
local stable manifold W s and a (j + ju)–dimensional local unstable manifold W u. Then there
are ε1 > 0 and δ1 > 0 and Cr−1 families of (j+ js+ks+ ls)–dimensional and (j+ ju+ku+ lu)–
dimensional manifolds {Ws

δ,ε : δ ∈ (0, δ1), ε ∈ (0, ε1)} and {Wu
δ,ε : δ ∈ (0, δ1), ε ∈ (0, ε1)} such

that for δ, ε > 0 the manifolds {Ws
δ,ε} and {Wu

δ,ε} are local stable and unstable manifolds of N ε
δ ,

respectively.

Proof. Fenichel’s second theorem says that, for small nonzero δ, the invariant manifold Nδ of
(8) has a (j + js + ks)–dimensional local stable manifold Ws

δ and a (j + ju + ku)–dimensional
local unstable manifold Wu

δ . Now, for each δ fixed, Fenichel’s second theorem also states that,
for ε ̸= 0 sufficiently small, the invariant manifold N ε

δ of (1) has a (j+ js+ks+ ls)–dimensional
local stable manifold Ws

δ,ε and a (j + ju + ku + lu)–dimensional local unstable manifold Wu
δ .

This complete the proof of Theorem B.

2 Examples

In this section we give some examples where Theorems A and B are applied.

Example 1. Consider the following 3–dimensional system

εx′ = x− ε+ δ, y′ = −y + ε+ δ, z′ = δz. (14)

The intermediate and slow manifolds S0
1 and S0

2 are given, respectively, by S0
1 = {(x, y, z) ∈ R3 :

x = 0} and S0
2 = {(x, y, z) ∈ R3 : x = y = 0}. On S0

1 we have defined the intermediate problem

0 = x, y′ = −y, z′ = 0, (15)

and on S0
2 we have defined the reduced problem

0 = x, 0 = y, z′ = z. (16)

Moreover, the layer problem is given by

x′ = x, y′ = 0, z′ = 0. (17)

Figure 1 illustrates the phase portraits of the problems (15), (16) and (17), respectively.
By using the notation given in Theorem B, note that we have j = 0, js = 0, ju = 1, ks = 1,

ku = 0, ls = 0 e lu = 1. We can then apply Theorems A and B at the normally hyperbolic
singular point N = (0, 0, 0) of (16). Applying Theorem A, we obtain for small nonzero δ, ε,
a family N ε

δ of hyperbolic singular points of (14). In fact, the family N ε
δ of singular points is

given by (ε − δ, ε + δ, 0). Applying Theorem B, we can conclude that each singular point N ε
δ

has a 1–dimensional local stable manifoldWs
δ,ε and a 2–dimensional local unstable manifoldWu

δ,ε.

In the next example we study the dynamics of a biological model.

Example 2. Consider the Rosenzweig–MacArthur model ([8]) for tritrophic food chains (as
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Figura 1: Phase portraits of the systems (15), (16) and (17), respectively.

proposed by [1])

εx′ = x

(
1− x− y

x+ b1

)
= xf(x, y),

y′ = y

(
x

x+ b1
− d1 −

z

y + b2

)
= yg(x, y, z),

z′ = δz

(
y

y + b2
− d2

)
= δzh(y),

(18)

where x, y and z are 1–dimensional variables which represent a logistic prey, a Holling type II
predator and a Holling type II top–predator, respectively. All parameters b1, b2, d1 and d2 are
assumed to be positive and less than 1, i.e., 0 < b1, b2, d1, d2 < 1. We note that all discussions
below are restricted to the first octant, i.e., x ≥ 0, y ≥ 0 e z ≥ 0.

The intermediate and slow manifolds S0
1 and S0

2 are given, respectively, by S0
1 = {xf(x, y) =

0} = {(x, y, z) : x = 0} ∪ {(x, y, z) : y = (1 − x)(b1 + x)} = M1 ∪ M2 and S0
2 = {xf(x, y) =

yg(x, y, z) = 0} = {(x, y, z) : x = y = 0} ∪ {(x, y, z) : x = 1, y = 0} = M3 ∪M4.
The intermediate problem is a dynamical system defined on S0

1 = M1 ∪ M2. On M1 it is
given by

y′ = y

(
− d1 −

z

y + b2

)
, z′ = 0, (19)

and on M2 it becomes

y′ = y

(
x

x+ b1
− d1 −

z

y + b2

)
, z′ = 0. (20)

The reduced problem is a dynamical system defined on S0
2 = M3 ∪M4. On both M3 and M4 it

is given by
z′ = −d2z. (21)

The layer problem is given by

x′ = x

(
1− x− y

x+ b1

)
, y′ = 0, z′ = 0. (22)

Figure 2 illustrates the phase portraits of the reduced and layer problems, respectively. Figure 3
illustrates the phase portraits of the systems (19) and (20), respectively. For the phase portrait
of (20) we are assuming that 1/(1 + b1) > d1.

Note that N = (0, 0, 0) and M = (1, 0, 0) are singular points of (21). Moreover, according
with item (i) of the Definition 1.1, system (18) is normally hyperbolic at N and M (for the
point M we are supposing that d1 ̸= 1/(1 + b1)). Applying Theorem A, we obtain for small
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Figura 2: Phase portraits of the systems (21) and (22), respectively.
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Figura 3: Phase portraits of the systems (19) and (20), respectively.

nonzero δ, ε, families N ε
δ and Mε

δ of hyperbolic singular points of (18). In fact, the persistent
singular points N ε

δ and Mε
δ are given by (0, 0, 0) and (1, 0, 0), respectively.

By using the notation given in Theorem B, we have that: for the point N , j = 0, js = 1,
ju = 0, ks = 1, ku = 0, ls = 0 e lu = 1, and for the point M, j = 0, js = 1, ju = 0, ks = 0,
ku = 1, ls = 1 e lu = 0. Applying Theorem B, we can conclude that each singular point N ε

δ

has a 2–dimensional local stable manifold Ws
δ,ε and a 1–dimensional local unstable manifold

Wu
δ,ε. Moreover, each singular point Mε

δ has a 2–dimensional local stable manifold Ws
δ,ε and a

1–dimensional local unstable manifold Wu
δ,ε.

Example 3. Consider the following 4–dimensional system

εx′ = x− z1 + δ + ε = f(x, z1, δ, ε),

y′ = −y − z2 + δ − ε = g(y, z2, δ, ε),

z′1 = δh1(x, z1, z2),

z′2 = δh2(y, z1, z2),

(23)

where h1(x, z1, z2) = −z2 − z1(−1 + z21 + z22) + (x − z1)
2 and h2(y, z1, z2) = z1 − z2(−1 + z21 +

z22) − (y + z2)
2. The intermediate and slow manifolds S0

1 and S0
2 are given, respectively, by

S0
1 = {(z1, y, z1, z2) ∈ R4 : y, z1, z2 ∈ R} and S0

2 = {(z1,−z2, z1, z2) ∈ R4 : z1, z2 ∈ R}. Note
that S0

1 and S0
2 are manifolds of dimension 3 and 2, respectively.

On S0
1 we have defined the intermediate problem

x = z1, y′ = −y − z2, z′1 = 0, z′2 = 0, (24)

and on S0
2 we have defined the reduced problem

x = z1, y = −z2, z′1 = −z2 − z1(−1 + z21 + z22), z′2 = z1 − z2(−1 + z21 + z22). (25)
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Figura 4: Phase portrait of the system (25).

Moreover, the layer problem is given by

x′ = x− z1, y′ = 0, z′1 = 0, z′2 = 0. (26)

For the phase portrait of the reduced problem we can use polar coordinates z1 = r cos θ and
z2 = r sin θ. Using these coordinates it is easy to see that the system (25) presents a singular
point P at the origin and a stable limit cycle Γ, as shown Figure 4.

According with item (i) of the Definition 1.1, all points of the slow manifold are normally
hyperbolic. Applying Theorem A, we obtain for small nonzero δ, ε, families Pε

δ and Γε
δ of

hyperbolic singular points and limit cycles of (23), respectively, such that P0
0 = P and Γ0

0 = Γ.
By using the notation given in Theorem B, we have that: for the point P, j = 0, js = 0, ju = 2,
ks = 1, ku = 0, ls = 0 e lu = 1, and for the limit cycle Γ, j = 1, js = 1, ju = −1, ks = 1, ku = 0,
ls = 0 e lu = 1. In agreement with Theorem B, each singular point Pε

δ has an 1–dimensional
local stable manifold Ps

δ,ε and a 3–dimensional local unstable manifold Pu
δ,ε. Each limit cycle

Γε
δ has a 3–dimensional local stable manifold Γs

δ,ε and an 1–dimensional local unstable manifold
Γu
δ,ε.
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