Minimal sets in singularly perturbed systems with three time–scales

Pedro Toniol Cardin,

Departamento de Matemática, FEIS, UNESP, 15385-000, Ilha Solteira, SP E-mail: pedrocardin@mat.feis.unesp.br,

Paulo Ricardo da Silva

Departamento de Matemática, IBILCE, UNESP, 15054-000, São José do Rio Preto, SP E-mail: prs@ibilce.unesp.br.

Marco Antonio Teixeira

Departamento de Matemática, IMECC, UNICAMP 13081-970, Campinas, SP E-mail: teixeira@ime.unicamp.br.

Abstract: *In this work we study three time scale singular perturbation problems*

$$
\varepsilon x' = f(\mathbf{x}, \varepsilon, \delta), \qquad y' = g(\mathbf{x}, \varepsilon, \delta), \qquad z' = \delta h(\mathbf{x}, \varepsilon, \delta),
$$

where $\mathbf{x} = (x, y, z) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$, ε and δ are two independent small parameter $(0 \leq \varepsilon,$ $\delta \ll 1$, and f, g, h are C^r functions, with $r \geq 1$. We establish conditions for the existence *of compact invariant sets (singular points, periodic and homoclinic orbits) when ε, δ >* 0*. Our main strategy is to consider three time scales which generate three different limit problems.*

Keywords: *Singular perturbations problems, three time scales*

In this work we study systems with three distinct time–scales. These systems are in general written in the form

$$
\varepsilon x' = f(\mathbf{x}, \varepsilon, \delta), \qquad y' = g(\mathbf{x}, \varepsilon, \delta), \qquad z' = \delta h(\mathbf{x}, \varepsilon, \delta), \tag{1}
$$

where $\mathbf{x} = (x, y, z) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$, ε and δ are two independent small parameter $(0 \le \varepsilon,$ $\delta \ll 1$, and *f*, *g*, *h* are *C*^{*r*} functions, where *r* is big enough for our purposes. In system (1) three different time–scales can be derived: a slow time–scale *t*, an intermediate time–scale $\tau_1 := \frac{t}{\delta}$ and a fast time–scale $\tau_2 := \frac{\tau_1}{\varepsilon}$.

Example. Examples of models involving three time–scales are for instance found in food chain models with a third class of so–called super or top-predators $([7], [1]$ and $[2])$ or in hormone secretion models ([5]). For instance, the Rosenzweig–MacArthur model ([8]) for tritrophic food chains (as proposed by [1])

$$
\varepsilon x' = x \left(1 - x - \frac{y}{x + b_1} \right), \quad y' = y \left(\frac{x}{x + b_1} - d_1 - \frac{z}{y + b_2} \right), \quad z' = \delta z \left(\frac{y}{y + b_2} - d_2 \right), \tag{2}
$$

is an example of a problem involving three different time–scales. It is composed of a logistic prey *x*, a Holling type II predator *y* and a Holling type II top–predator *z*. Models with three or more time–scales are also used to study neuronal behavior, in particular to explain firing of neurons or so–called mixed mode oscillations (see [4], [6]).

In this work we develop a mathematical theory in order to study systems (1). Our main goal is to build a theory, inspired by the one given by Fenichel in [3], for systems involving three different time–scales.

1 Statement of the main results

The system (1) is written with respect to the time–scale τ_1 so it is called *intermediate system*. By transforming (1) to the slow and fast variables t and τ_2 we obtain, respectively, the *slow system*

$$
\varepsilon \delta x' = f(\mathbf{x}, \varepsilon, \delta), \qquad \delta y' = g(\mathbf{x}, \varepsilon, \delta), \qquad z' = h(\mathbf{x}, \varepsilon, \delta), \tag{3}
$$

and the *fast system*

$$
x' = f(\mathbf{x}, \varepsilon, \delta), \qquad y' = \varepsilon g(\mathbf{x}, \varepsilon, \delta), \qquad z' = \varepsilon \delta h(\mathbf{x}, \varepsilon, \delta). \tag{4}
$$

Remark. To simplify our notation, we will use the notation x' to indicate the derivative with respect to the three time scales. More specifically, for the systems (1), (3) and (4), *x ′* indicates the derivatives $\frac{dx}{d\tau_1}$, $\frac{dx}{dt}$ and $\frac{dx}{d\tau_2}$, respectively.

Note that, for $\varepsilon, \delta \neq 0$, systems (1), (3) and (4) are equivalent. By setting $\varepsilon = \delta = 0$ in (1), (3) and in (4) we obtain three systems with dynamics essentially different: the *intermediate problem*

$$
0 = f(\mathbf{x}, 0, 0), \qquad y' = g(\mathbf{x}, 0, 0), \qquad z' = 0,
$$
\n(5)

the *reduced problem*

$$
0 = f(\mathbf{x}, 0, 0), \qquad 0 = g(\mathbf{x}, 0, 0), \qquad z' = h(\mathbf{x}, 0, 0), \tag{6}
$$

and the *layer problem*

$$
x' = f(\mathbf{x}, 0, 0), \qquad y' = 0, \qquad z' = 0.
$$
 (7)

For each ε and δ , consider the following sets

$$
\mathcal{S}_1^{\delta} = \{ \mathbf{x} \in \mathbb{R}^{n+m+p} : f(\mathbf{x}, 0, \delta) = 0 \}
$$

and

$$
\mathcal{S}_2^{\varepsilon} = \{ \mathbf{x} \in \mathbb{R}^{n+m+p} : f(\mathbf{x}, \varepsilon, 0) = g(\mathbf{x}, \varepsilon, 0) = 0 \}.
$$

Note that the intermediate and reduced problems (5) and (6) are dynamical systems defined on S_1^0 and S_2^0 , respectively. On the other hand S_1^0 is a manifold of singular points for (7). In what follows we refer to S_1^0 and S_2^0 as the *intermediate* and *slow manifolds*, respectively. The reason for these names is that on S_1^0 the intermediate time–scale is dominating and on S_2^0 the slow time–scale predominates.

Following the ideas of the geometric singular perturbation theory [3], our goal will be to prove that one can obtain information on the dynamics of the system (1), for small values of *ε* and δ , by suitably combining the dynamics of the three limit problems (5), (6) and (7).

Four other systems will also play an important role in our analysis of system (1). By setting $\varepsilon = 0$ in (1) (or in (3)) and in (4) while keeping δ fixed but nonzero, we obtain the δ –*intermediate problem*

$$
0 = f(\mathbf{x}, 0, \delta), \qquad y' = g(\mathbf{x}, 0, \delta), \qquad z' = \delta h(\mathbf{x}, 0, \delta), \tag{8}
$$

and the *δ*–*layer problem*

$$
x' = f(\mathbf{x}, 0, \delta), \qquad y' = 0, \qquad z' = 0.
$$
 (9)

By setting $\delta = 0$ in (1) (or in (4)) and in (3) while keeping ε fixed but nonzero, we obtain the *ε*–*intermediate problem*

$$
\varepsilon x' = f(\mathbf{x}, \varepsilon, 0), \qquad y' = g(\mathbf{x}, \varepsilon, 0), \qquad z' = 0,
$$
\n(10)

and the *ε*–*reduced problem*

$$
0 = f(\mathbf{x}, \varepsilon, 0), \qquad 0 = g(\mathbf{x}, \varepsilon, 0), \qquad z' = h(\mathbf{x}, \varepsilon, 0). \tag{11}
$$

Note that when both $\varepsilon, \delta \to 0$, the two δ, ε –intermediate problems (8) and (10) become the same limit problem (5). The problems (8) and (11) are dynamical systems defined on the manifolds S_1^{δ} and S_2^{ε} , respectively. On the other hand, S_1^{δ} and S_2^{ε} are sets of singular points for the problems (9) and (10) , respectively.

Definition 1.1. We say that system (1) is normally hyperbolic at $\mathbf{x}_0 \in S_2^0$ if the real parts of *the eigenvalues of the Jacobian matrix*

$$
\left(\begin{array}{c}D_{1,2} f(\mathbf{x}_0, 0, 0) \\ D_{1,2} g(\mathbf{x}_0, 0, 0)\end{array}\right)
$$

are nonzero. We say that system (1) *is* δ *–normally hyperbolic at* $\mathbf{x}_0 \in S_1^{\delta}$ *if the real parts of the eigenvalues of the Jacobian* $D_1 f(\mathbf{x}_0, 0, \delta)$ *are nonzero.*

Now we are in position to state our main results.

Theorem A. *Consider the* C^r *family* (1)*.* Let $\mathcal{N} \subseteq \mathcal{S}_2^0$ be a *j*-dimensional compact normally *hyperbolic invariant manifold of the reduced problem* (6) *Then there are* $\varepsilon_1 > 0$ *and* $\delta_1 > 0$ *and a* C^{r-1} family of manifolds $\{\mathcal{N}_{\delta}^{\varepsilon} : \delta \in (0,\delta_1), \varepsilon \in (0,\varepsilon_1)\}$ such that $\mathcal{N}_0^0 = \mathcal{N}$ and $\mathcal{N}_{\delta}^{\varepsilon}$ is a hyperbolic *invariant manifold of* (1)*.*

Proof. Firstly we use Fenichel's first theorem to study the persistence of N under δ –perturbations of the system (8). Fenichel's first theorem states that the compact normally hyperbolic invariant manifold *N* of the reduced problem (6) persists, for $\delta \neq 0$ small, as an invariant manifold \mathcal{N}_{δ} for the system (8). More precisely, there exists $\delta_1 > 0$ and a C^{r-1} family of manifolds $\{\mathcal{N}_{\delta} : \delta \in (-\delta_1, \delta_1)\}\$ such that $\mathcal{N}_0 = \mathcal{N}$ and \mathcal{N}_{δ} is a hyperbolic invariant manifold of (8). Now, for each *δ* fixed, we use again the Fenichel's Theory to study the persistence of \mathcal{N}_{δ} under ε – perturbations of the system (1). Note that the system (8) corresponds to the reduced problem associated to the system (1). Fenichel's first theorem says that the compact δ –normally hyperbolic invariant manifold \mathcal{N}_{δ} of (8) persists, for $\varepsilon \neq 0$ sufficiently small, for the system (1), that is, there exists $\varepsilon_1 > 0$ and a C^{r-1} family of manifolds $\{\mathcal{N}_{\delta}^{\varepsilon} : \varepsilon \in (-\varepsilon_1, \varepsilon_1)\}\$ such that $\mathcal{N}_{\delta}^0 = \mathcal{N}_{\delta}$ and $\mathcal{N}_{\delta}^{\varepsilon}$ is a hyperbolic invariant manifold of (1). This complete the proof of Theorem A. \Box

Consider system (8) supplemented by the trivial equation $\delta' = 0$

$$
0 = f(\mathbf{x}, 0, \delta), \qquad y' = g(\mathbf{x}, 0, \delta), \qquad z' = \delta h(\mathbf{x}, 0, \delta), \qquad \delta' = 0.
$$
 (12)

Let $G(\mathbf{x},\delta) := (g(\mathbf{x},0,\delta), \delta h(\mathbf{x},0,\delta),0)$ be the vector field defined by (12). Assume that the linearization of *G* at points $(\mathbf{x}, 0)$, such that $\mathbf{x} \in S_2^0$, has *k*^{*s*} eigenvalues with negative real part and k^u eigenvalues with positive real part. The corresponding stable and unstable eigenspaces have dimensions k^s and k^u , respectively.

Similarly, consider system (4) supplemented by the trivial equation $\varepsilon' = 0$

$$
x' = f(\mathbf{x}, \varepsilon, \delta), \qquad y' = \varepsilon g(\mathbf{x}, \varepsilon, \delta), \qquad z' = \varepsilon \delta h(\mathbf{x}, \varepsilon, \delta), \qquad \varepsilon' = 0. \tag{13}
$$

Let $H(\mathbf{x}, \varepsilon, \delta) := (f(\mathbf{x}, \varepsilon, \delta), \varepsilon g(\mathbf{x}, \varepsilon, \delta), \varepsilon \delta h(\mathbf{x}, \varepsilon, \delta), 0)$ be the vector field defined by (13). Assume that the linearization of *H* at points $(\mathbf{x}, 0, \delta)$, such that $\mathbf{x} \in \mathcal{S}_1^{\delta}$, has *l*^{*s*} and *l*^{*u*} eigenvalues with

negative and positive real parts, so that the corresponding stable and unstable eigenspaces have dimensions l^s and l^u , respectively.

Theorem B. *Under the hypotheses of Theorem A, suppose that* N *has* a $(j + j^s)$ *–dimensional local stable manifold* W^s *and a* $(j + j^u)$ *–dimensional local unstable manifold* W^u . Then there are $\varepsilon_1 > 0$ and $\delta_1 > 0$ and C^{r-1} families of $(j+j^s+k^s+l^s)$ -dimensional and $(j+j^u+k^u+l^u)$ dimensional manifolds $\{ \mathcal{W}_{\delta,\varepsilon}^s : \delta \in (0,\delta_1), \varepsilon \in (0,\varepsilon_1) \}$ and $\{ \mathcal{W}_{\delta,\varepsilon}^u : \delta \in (0,\delta_1), \varepsilon \in (0,\varepsilon_1) \}$ such *that for* $\delta, \varepsilon > 0$ *the manifolds* $\{W_{\delta,\varepsilon}^s\}$ *and* $\{W_{\delta,\varepsilon}^u\}$ *are local stable and unstable manifolds of* $\mathcal{N}_{\delta}^{\varepsilon}$, *respectively.*

Proof. Fenichel's second theorem says that, for small nonzero δ , the invariant manifold \mathcal{N}_{δ} of (8) has a $(j + j^s + k^s)$ -dimensional local stable manifold \mathcal{W}_δ^s and a $(j + j^u + k^u)$ -dimensional local unstable manifold \mathcal{W}_{δ}^u . Now, for each δ fixed, Fenichel's second theorem also states that, for $\varepsilon \neq 0$ sufficiently small, the invariant manifold $\mathcal{N}_{\delta}^{\varepsilon}$ of (1) has a $(j+j^{s}+k^{s}+l^{s})$ -dimensional local stable manifold $\mathcal{W}^s_{\delta,\varepsilon}$ and a $(j + j^u + k^u + l^u)$ -dimensional local unstable manifold \mathcal{W}^u_{δ} . This complete the proof of Theorem B.

2 Examples

In this section we give some examples where Theorems A and B are applied.

Example 1. Consider the following 3–dimensional system

$$
\varepsilon x' = x - \varepsilon + \delta, \qquad y' = -y + \varepsilon + \delta, \qquad z' = \delta z. \tag{14}
$$

The intermediate and slow manifolds S_1^0 and S_2^0 are given, respectively, by $S_1^0 = \{(x, y, z) \in \mathbb{R}^3 :$ $x = 0$ } and $S_2^0 = \{(x, y, z) \in \mathbb{R}^3 : x = y = 0\}$. On S_1^0 we have defined the intermediate problem

$$
0 = x, \qquad y' = -y, \qquad z' = 0,\tag{15}
$$

and on S_2^0 we have defined the reduced problem

$$
0 = x, \qquad 0 = y, \qquad z' = z. \tag{16}
$$

Moreover, the layer problem is given by

$$
x' = x, \qquad y' = 0, \qquad z' = 0. \tag{17}
$$

Figure 1 illustrates the phase portraits of the problems (15), (16) and (17), respectively.

By using the notation given in Theorem B, note that we have $j = 0$, $j^s = 0$, $j^u = 1$, $k^s = 1$, $k^u = 0$, $l^s = 0$ e $l^u = 1$. We can then apply Theorems A and B at the normally hyperbolic singular point $\mathcal{N} = (0,0,0)$ of (16). Applying Theorem A, we obtain for small nonzero δ, ε , a family $\mathcal{N}_{\delta}^{\varepsilon}$ of hyperbolic singular points of (14). In fact, the family $\mathcal{N}_{\delta}^{\varepsilon}$ of singular points is given by $(\varepsilon - \delta, \varepsilon + \delta, 0)$. Applying Theorem B, we can conclude that each singular point $\mathcal{N}_{\delta}^{\varepsilon}$ has a 1–dimensional local stable manifold $\mathcal{W}^s_{\delta,\varepsilon}$ and a 2–dimensional local unstable manifold $\mathcal{W}^u_{\delta,\varepsilon}$.

In the next example we study the dynamics of a biological model.

Example 2. Consider the Rosenzweig–MacArthur model ([8]) for tritrophic food chains (as

Figura 1: Phase portraits of the systems (15), (16) and (17), respectively.

proposed by [1])

$$
\varepsilon x' = x \left(1 - x - \frac{y}{x + b_1} \right) = x f(x, y),
$$

\n
$$
y' = y \left(\frac{x}{x + b_1} - d_1 - \frac{z}{y + b_2} \right) = y g(x, y, z),
$$

\n
$$
z' = \delta z \left(\frac{y}{y + b_2} - d_2 \right) = \delta z h(y),
$$
\n(18)

where x, y and z are 1-dimensional variables which represent a logistic prey, a Holling type II predator and a Holling type II top–predator, respectively. All parameters b_1 , b_2 , d_1 and d_2 are assumed to be positive and less than 1, i.e., $0 < b_1, b_2, d_1, d_2 < 1$. We note that all discussions below are restricted to the first octant, i.e., $x \geq 0$, $y \geq 0$ e $z \geq 0$.

The intermediate and slow manifolds S_1^0 and S_2^0 are given, respectively, by $S_1^0 = \{xf(x,y) = x\}$ $0\} = \{(x, y, z) : x = 0\} \cup \{(x, y, z) : y = (1 - x)(b_1 + x)\} = M_1 \cup M_2$ and $S_2^0 = \{xf(x, y) = 0\}$ $yg(x, y, z) = 0$ } = { $(x, y, z) : x = y = 0$ } \cup { $(x, y, z) : x = 1, y = 0$ } = $M_3 \cup M_4$.

The intermediate problem is a dynamical system defined on $S_1^0 = M_1 \cup M_2$. On M_1 it is given by

$$
y' = y \left(-d_1 - \frac{z}{y + b_2} \right), \qquad z' = 0,
$$
\n(19)

and on M_2 it becomes

$$
y' = y \left(\frac{x}{x + b_1} - d_1 - \frac{z}{y + b_2} \right), \qquad z' = 0.
$$
 (20)

The reduced problem is a dynamical system defined on $S_2^0 = M_3 \cup M_4$. On both M_3 and M_4 it is given by

$$
z' = -d_2 z.\tag{21}
$$

The layer problem is given by

$$
x' = x \left(1 - x - \frac{y}{x + b_1} \right), \qquad y' = 0, \qquad z' = 0.
$$
 (22)

Figure 2 illustrates the phase portraits of the reduced and layer problems, respectively. Figure 3 illustrates the phase portraits of the systems (19) and (20), respectively. For the phase portrait of (20) we are assuming that $1/(1 + b_1) > d_1$.

Note that $\mathcal{N} = (0, 0, 0)$ and $\mathcal{M} = (1, 0, 0)$ are singular points of (21). Moreover, according with item (i) of the Definition 1.1, system (18) is normally hyperbolic at *N* and *M* (for the point *M* we are supposing that $d_1 \neq 1/(1 + b_1)$. Applying Theorem A, we obtain for small

Figura 2: Phase portraits of the systems (21) and (22), respectively.

Figura 3: Phase portraits of the systems (19) and (20), respectively.

nonzero δ, ε , families $\mathcal{N}_{\delta}^{\varepsilon}$ and $\mathcal{M}_{\delta}^{\varepsilon}$ of hyperbolic singular points of (18). In fact, the persistent singular points $\mathcal{N}_{\delta}^{\varepsilon}$ and $\mathcal{M}_{\delta}^{\varepsilon}$ are given by $(0,0,0)$ and $(1,0,0)$, respectively.

By using the notation given in Theorem B, we have that: for the point $\mathcal{N}, j = 0, j^s = 1$, $j^u = 0, k^s = 1, k^u = 0, l^s = 0$ e $l^u = 1$, and for the point $\mathcal{M}, j = 0, j^s = 1, j^u = 0, k^s = 0$, $k^u = 1$, $l^s = 1$ e $l^u = 0$. Applying Theorem B, we can conclude that each singular point $\mathcal{N}_{\delta}^{\varepsilon}$ has a 2–dimensional local stable manifold $\mathcal{W}^s_{\delta,\varepsilon}$ and a 1–dimensional local unstable manifold *W*_{δ,ε}. Moreover, each singular point $\mathcal{M}_{\delta}^{\varepsilon}$ has a 2–dimensional local stable manifold $\overline{W}_{\delta,\varepsilon}^{s}$ and a 1-dimensional local unstable manifold $\overline{\mathcal{W}}_{\delta,\varepsilon}^u$.

Example 3. Consider the following 4–dimensional system

$$
\varepsilon x' = x - z_1 + \delta + \varepsilon = f(x, z_1, \delta, \varepsilon),
$$

\n
$$
y' = -y - z_2 + \delta - \varepsilon = g(y, z_2, \delta, \varepsilon),
$$

\n
$$
z'_1 = \delta h_1(x, z_1, z_2),
$$

\n
$$
z'_2 = \delta h_2(y, z_1, z_2),
$$
\n(23)

where $h_1(x, z_1, z_2) = -z_2 - z_1(-1 + z_1^2 + z_2^2) + (x - z_1)^2$ and $h_2(y, z_1, z_2) = z_1 - z_2(-1 + z_1^2 + z_2^2)$ z_2^2 – $(y + z_2)^2$. The intermediate and slow manifolds S_1^0 and S_2^0 are given, respectively, by $\mathcal{S}_1^0 = \{(z_1, y, z_1, z_2) \in \mathbb{R}^4 : y, z_1, z_2 \in \mathbb{R}\}\$ and $\mathcal{S}_2^0 = \{(z_1, -z_2, z_1, z_2) \in \mathbb{R}^4 : z_1, z_2 \in \mathbb{R}\}\.$ Note that S_1^0 and S_2^0 are manifolds of dimension 3 and 2, respectively.

On S_1^0 we have defined the intermediate problem

$$
x = z_1, \quad y' = -y - z_2, \quad z'_1 = 0, \quad z'_2 = 0,
$$
\n
$$
(24)
$$

and on S_2^0 we have defined the reduced problem

$$
x = z_1, \quad y = -z_2, \quad z_1' = -z_2 - z_1(-1 + z_1^2 + z_2^2), \quad z_2' = z_1 - z_2(-1 + z_1^2 + z_2^2). \tag{25}
$$

Figura 4: Phase portrait of the system (25).

Moreover, the layer problem is given by

$$
x' = x - z_1, \quad y' = 0, \quad z'_1 = 0, \quad z'_2 = 0.
$$
 (26)

For the phase portrait of the reduced problem we can use polar coordinates $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$. Using these coordinates it is easy to see that the system (25) presents a singular point P at the origin and a stable limit cycle Γ , as shown Figure 4.

According with item (i) of the Definition 1.1, all points of the slow manifold are normally hyperbolic. Applying Theorem A, we obtain for small nonzero δ, ε , families $\mathcal{P}_{\delta}^{\varepsilon}$ and $\Gamma_{\delta}^{\varepsilon}$ of hyperbolic singular points and limit cycles of (23), respectively, such that $\mathcal{P}_0^0 = \mathcal{P}$ and $\Gamma_0^0 = \Gamma$. By using the notation given in Theorem B, we have that: for the point P , $j = 0$, $j^s = 0$, $j^u = 2$, $k^{s} = 1, k^{u} = 0, l^{s} = 0$ e $l^{u} = 1$, and for the limit cycle Γ , $j = 1, j^{s} = 1, j^{u} = -1, k^{s} = 1, k^{u} = 0$, $l^s = 0$ e $l^u = 1$. In agreement with Theorem B, each singular point $\mathcal{P}^{\varepsilon}_{\delta}$ has an 1–dimensional local stable manifold $\mathcal{P}^s_{\delta,\varepsilon}$ and a 3-dimensional local unstable manifold $\mathcal{P}^u_{\delta,\varepsilon}$. Each limit cycle Γ *ε δ* has a 3–dimensional local stable manifold Γ*^s δ,ε* and an 1–dimensional local unstable manifold Γ *u δ,ε*.

Referˆencias

- [1] B. Deng, Food chain chaos due to junction–fold point, *Chaos*, 11(3) (2001), 514–525.
- [2] B. Deng and G. Hines, *Food chain chaos due to Shilnikov's orbit*, Chaos **12(3)** (2002), 533–538.
- [3] N. Fenichel, *Geometric singular perturbation theory for ordinary differential equations*, J. Diff. Equations **31** (1979), 53–98.
- [4] M. Krupa, N. Popović and N. Kopell *Mixed–mode oscillations in three time–scale systems: a prototypical example*, SIAM Appl. Dyn. Syst. 7(2) (2008), 361–420.
- [5] W. Kunpasuruang, Y. Lenbury and G. Hek, *A nonlinear mathmatical model for pulsatile discharges of luteinizing hormone mediated by hypothalamic and extra–hypothalamic pathways*, Math Models Methods Appl. Sci. **12(5)** (2002), 607–624.
- [6] G.S. Medvedev and J.E. Cisternas, *Multimodal regimes in a compartmental model of the dopamine neuron*, Physica D **194(3-4)** (2004), 333–356.
- [7] S. Muratori and S. Rinaldi, *Low- and high–frequency oscillations in three–dimensional food chain systems*, SIAM J. Appl. Math. **52** (1992), 1688–1706.
- [8] M.L. Rosenzweig and R.H. MacArthur, *Graphical representation and stability conditions of predator–prey interactions*, Am. Nat. **97** (1963), 209–223.