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Applying interior points methods for the radiotherapy

planning problem in a fuzzy approach background
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Abstract. A Radiation Therapy Design Problem consists in minimize the total radiation dosage
at the patient. In this work, the dosage values are represented by fuzzy numbers. The transition
from healthy tissue to tumour cells is continuous and the surprise function is adopted to model it.
We propose to solve this problem by a specially tailored Primal-Dual Interior Point Method and
present numerical experiments with real world large-scale problems.
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1 Introduction

Radiation therapy is a technique used for treating cancer patients with ionic radiation. Its aim
is to deliver a dose of radiation in order to eliminate tumour cells avoiding, as much as possible,
the nearby healthy tissues and critical organs. This process is made taking a CT-scan (Computed
Tomography) to obtain images of the patient.

Generally, in the literature, there is no agreement on the function objective. This function
should minimize total radiation, maximize minimum tumor dosage, minimize radiation to critical
structures, etc. In practice, is difficult to ensure that with an exact quantity of dose it is possible
to achieve the purposes of the radiation therapy, since the oncologist can vary the dose distribution
according to his expertise and tolerances of each region. Thus, in 2001, Lodwick et al. [5] presented
three approaches to use fuzzy optimization in the radiation therapy problems where the fuzziness
appears on the right-hand side. One of these approaches considers the dosage values as fuzzy
numbers and uses the theory of surprise functions, developed by Neumaier, in 2003, [6], to translate
the fuzzy constraints into non-linear programming problem.

Fuzzy optimization is used to ensure that the constraints have a high membership degree.

In this work we will combine these two concepts, where the fuzzyness will be considered on
the bounds of the desired dose of radiation as being triangular fuzzy numbers. Another types of
fuzziness, in which more general cases are considered, can be seen in [3], [7], [8], [10].
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2 Problem Formulation

The mathematical representation correspondent to fuzzy optimization radiotherapy problem is
(see [4]):

min cTx

s.t Ax ≤ b̃
0 ≤ x

(1)

where, considering that the images of the patient are discretized in TP pixels and the radiation
delivered is shaped by N beamlets,

A ∈ RTP×N : is the attenuation matrix that represents how one unit of radiation intensity in
each beamlet is deposited in pixels, A = [AT AC AB ]T in which AT is the matrix corresponds
to tumour pixels, AC corresponds to critical organs and AB corresponds to healthy tissues
surrounding the tumour,

b̃ ∈ RTP : is a vector with the desired dose. In this approach, the components are triangular fuzzy
numbers,

c ∈ RTP : is a vector chosen appropriately according to our goals,

x ∈ RN : variables that represent the beamlet intensities.

A fuzzy number [9], ũ, is a special type of fuzzy set where the membership function µ is defined
on R, that is, µ : R→ [0, 1], µ(x) measures the degree of belonging of x in ũ.

The α-cut of the fuzzy number ũ, denoted as [ũ]α = {x ∈ R : µ(x) ≥ α} is a non-empty,
bounded and closed interval for all α ∈ (0, 1]. Taking uαL and uαR as the extremes of the interval,
a fuzzy number ũ can be defined by the α-cut, [ũ]α = [uαL, u

α
R].

Thus, a triangular fuzzy number ũ = (u1 u u2) defined by the α-cut is the interval

[ũ]α = [u1 + α(u− u1), u2 + α(u− u2)] for all α ∈ (0, 1].

As fuzzy numbers are fuzzy sets, in (1) each component of Ax has a degree of belonging to a
subset of R, the respective component of b̃. This case will be treated bellow using the surprise
function method (see [4]) that searches the best solution in the constraints for each i = 1, . . . , TP

N∑
j=1

aijxj ≤ b̃i ⇐⇒

 N∑
j=1

aijxj = ξ̃i, µi(ξi) = pos(b̃i ≥ ξ̃i)

 (2)

where µ is the membership function and the surprise function is obtained from µ by s(ξ) =(
1

µ(ξ) − 1
)2

. The surprise function, so defined, measures the violation of constraints, therefore

combining these violations, the formulation of fuzzy optimization using surprise functions obtained
is (see [6]):

min

TP∑
i=1

si

 N∑
j=1

aijxj


s.t. 0 ≤ x ≤ U

(3)

where the objective function minimizes the total dosage. The single constraint guarantees that the
radiation of the beams be bounded.

The model (3) can be modified in order to ensure a good quality of solutions. We will add the
following constraints:
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• Taking into account the relation (2), ξ will be considered as a variable that satisfies: Ax = ξ.

• ξ being a variable must satisfy ξ ≤ b̃ = (b1 b b2)(triangular fuzzy number). Out of the
interval (b1, b2) the surprise functions take high values. Then b1 ≤ ξ ≤ b2 guarantees that
the surprise functions will be small and, therefore, f(x) be minimized.

The above analysis allows us to define an improved formulation of the problem:
min f(x)
s.t Ax = ξ

b1 ≤ ξ ≤ b2
0 ≤ x ≤ U

(4)

3 The interior point method

Applying the interior point method on formulation (4) and adding the variables v, z1, z2 ≥ 0,
(4) becomes 

min f(x)
s.t x+ v = U

Ax = ξ
ξ − z1 = b1
ξ + z2 = b2

x, v, z1, z2 ≥ 0

⇐⇒


min f̃(x)
s.t x+ v = U

Ax = ξ
ξ − z1 = b1
ξ + z2 = b2

where

f̃(x) = f(x)− γx
N∑
i=1

lnxi − γv
N∑
i=1

ln vi − γz1
TP∑
i=1

ln z1i − γz2
TP∑
i=1

ln z2i ,

x = (x, v, z1, z2) and the non-negativity of x is implicit in the logarithm function.
Let the Lagrangean function of f̃ be

L(x; y) = f̃(x)− yT (x+ v − U)− wT1 (ξ − z1 − b1)− wT2 (ξ + z2 − b2)− qT (Ax− ξ) (5)

where y = (y, w1, w2, q) is the non-negative dual variable of the formulation (4).
Computing the gradient of L:

∇xL(x; y) = ∇f(x)− γxX−1e− y −AT q,
∇ξL(x; y) = −w1 − w2 + q,

∇vL(x; y) = −γvV −1e− y,
∇z1L(x; y) = −γz1Z−12 e+ w1,

∇z2L(x; y) = −γz2Z−12 e− w2, (6)

∇yL(x; y) = −(x+ v − U),

∇w1
L(x; y) = −(ξ − z1 − b1),

∇w2
L(x; y) = −(ξ + z2 − b2),

∇qL(x; y) = −(Ax− ξ)

where X, V , Z1 and Z2 are diagonal matrix formed by the components of x, v, z1 and z2, respec-
tively, and e is the vector of 1′s. Let p, s, t1 and t2 be the complementary (non-negative) variables
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such that

p = γxX
−1 ⇐⇒ XPe = γxe,

s = γvV
−1 ⇐⇒ V Se = γve,

t1 = γz1Z
−1
1 ⇐⇒ Z1T1e = γz1e,

t2 = γz2Z
−1
2 ⇐⇒ Z2T2e = γz2e.

Replacing on gradient of L, in (6), we obtain the function F

F =



∇f(x)− p− y −AT q
−w1 − w2 + q

y + s
−t1 + w1

t2 + w2

x+ v − U
ξ − z1 − b1
ξ + z2 − b2
Ax− ξ

XPe− γxe
V Se− γve
T1Z1e− γz1e
T2Z2e− γz2e



(7)

Applying the Newton method to the equation F = 0, we obtain



H 0 0 0 0 −I 0 0 −AT −I 0 0 0
0 0 0 0 0 0 −I −I I 0 0 0 0
0 0 0 0 0 I 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0 0 0 0 −I 0
0 0 0 0 0 0 0 I 0 0 0 0 I
I 0 I 0 0 0 0 0 0 0 0 0 0
0 I 0 −I 0 0 0 0 0 0 0 0 0
0 I 0 0 I 0 0 0 0 0 0 0 0
A −I 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 X 0 0 0
0 0 S 0 0 0 0 0 0 0 V 0 0
0 0 0 T1 0 0 0 0 0 0 0 Z1 0
0 0 0 0 T2 0 0 0 0 0 0 0 Z2



.d = r (8)

where H is the N ×N - Hessian matrix of f , d = [dx dξ dv dz1 dz2 dy dw1 dw2 dq dp ds dt1 dt2]T

and r = −F

Solving (8) and denoting X−1P + V −1S and Z−11 T1 + Z−12 T2 as Dx and Dz, respectively, we
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obtain

[H +Dx +ATDzA]dx = rx

dξ = Adx− r9
dv = r6 − dx
dz1 = dξ − r7
dz2 = r8 − dξ
dp = X−1(r10 − Pdx)

ds = V −1(r11 − Sdx) (9)

dt1 = Z−11 (r12 − T1dz1)

dt2 = Z−12 (r13 − T2dz2)

dq = r2 + dw1 + dw2

dy = r3 − ds
dw1 = r4 + dt1

dw2 = r5 − dt2

where
rx := r1 +AT (r2 + rw1

+ rw2
) + r3 + V −1(Sr6 − r11) +X−1r10

rw1
:= r4 + Z−11 [r12 + T1(r7 + r9)], rw2

:= r5 − Z−12 [r13 − T2(r8 + r9)]

The system (9) allows us to compute the direction vectors. The main difficult is to compute
dx. However, Dx and Dz are diagonal matrices and, in this case, defining, for each i = 1, . . . , TP ,
Mi(ξi) = 3µi(ξi)

−4 − 2µi(ξi)
−3 and

dHi
=


2Mi

(bi−b1i )2
, if ξi ∈ (b1i , bi)

2Mi

(b2i−bi)2
, if ξi ∈ (bi, b

2
i )

0 , otherwise

H = ATDHA and taking D = DH +Dz. Therefore, to compute dx the linear system Bdx = rx
is solved, with B = ATDA+Dx being a symmetric positive definite matrix.

4 Computational Results

The algorithm is tested in MATLAB for the first instance, Head-and-Neck-01, from the TROTS
dataset [1], that has 9977 beamlets.

The tumour has 5096 pixels with dose (24.5 43.47 48.3), these values indicate that a dose of
43.47 will eliminate the tumour cells. The critical organ considered is spinal cord with 3529 pixels
and dose (0 22.8 38), indicating that dose more than 38 are completely unacceptable. After 1000
iterations, we obtained solution x with value objective function f(x) = 1.73662 guaranteeing that
the delivered dosage satisfies to radiation oncologist.

Moreover, the Erasmuns-iCycle solver (developed in [2]) considers all the critical organs and
healthy tissue on the objective function and they are optimized taking into account different
priorities. Then, the optimal solution provided in [1], solutionX, has as value objective function
(4) f(solutionX) = 4938.867182× 106.

The high difference between both solutions is because, with solutionX, the radiation deliveries
on the spinal cord is far from the value expected by the oncologist increasing the value of the
surprise function and, therefore, the objective function.
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5 Conclusion

The approach proposed solves satisfactorily the problem attaining the ideal dosage to kill the
tumour. Comparing with the solver, the solution obtained in this work is better because keeps
minimal values of radiation for the critical organ, decreasing the risks and future complications.
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