Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

# Um método de pontos interiores para resolução de problemas lineares discretos mal-postos

Emídio Santos Portilho Júnior<sup>1</sup> CECE/UNIOESTE, Foz do Iguaçu, PR Aurelio Ribeiro Leite de Oliveira<sup>2</sup> IMECC/UNICAMP, Campinas, PR

**Resumo**. Dada a importância e a dificuldade em se obter resultados satisfatórios via métodos diretos para solução de problemas lineares discretos mal-postos oriundos da discretização de problemas inversos lineares. Neste trabalho, nós retomamos o método de pontos interiores do tipo Preditor-Corretor apresentado em [5] que aproxima o problema de regularização de Tikhonov por um problema de programação quadrática através de uma formulação Primal-Dual com barreira logarítmica. Este método Preditor-Corretor nos leva a sistemas de equações normais que são resolvidos pelo método dos gradientes conjugados precondicinado com o precondiconador separador. Neste trabalho, a fim de reduzir o número de iterações de pontos interiores e do método dos gradientes conjugados precondicionado [8], propomos a utilização do precondicionador Fatoração Controlada de Cholesky [1].

Palavras-chave. Regularização de Tikhonov, Programação Quadrática, Métodos de Pontos Interiores.

# 1 Introdução

A discretização de um problema inverso comumente fornece um sistema linear de equações

$$Ax = b, \ A \in \mathbb{R}^{m \times n}, \ x \in \mathbb{R}^n, \ b \in \mathbb{R}^m \tag{1}$$

Quando os valores singulares da matriz dos coeficientes deste sistema se acumulam próximos à origem e decaem gradualmente a zero, isso torna a matriz severamente mal-condicionada. Tais sistemas são frequentemente chamados de problemas lineares discretos e mal-postos [6].

O método de regularização de Tikhonov é um dos mais antigos e mais populares métodos de regularização. Este método aproxima o sistema linear (1) pelo sistema regularizado

$$(A^T A + \alpha^2 I)x = A^T b, (2)$$

onde  $\alpha \geq 0$  é o parâmetro de regularização que determina a quantidade de regularização eI é o operador identidade.

Em muitos problemas, a matriz A tem muitos valores singulares pequenos, o que acaba acarretando um mal condicionamento da matriz A e consequentemente de  $A^T A$ , visto que os autovalores de  $A^T A$  são os valores singulares de A elevados ao quadrado. Além disso, em geral o vetor b

<sup>&</sup>lt;sup>1</sup>emidio.portilho@gmail.com.

<sup>&</sup>lt;sup>2</sup>aurelio@ime.unicamp.br.

está contaminado por erros de medidas (ruídos). Neste trabalho, assumiremos que os erros estão restritos ao lado direito do sistema (1), isto é, dado b podemos escrever

$$b = \overline{b} + \mathbf{e}$$
  $\overline{b} = A\overline{x}$ ,

onde  $\overline{b}$  representa os dados exatos não perturbados,  $\overline{x} = A^{\dagger}\overline{b}$  representa a solução exata e o vetor **e** representa os erros nos dados.

A solução x de um problema mal-posto obtida via métodos diretos está com frequência associada a um valor elevado de  $||x||_2$ , veja [7]. Em vista disso o método apresentado por Tikhonov e Arsenin em [7] tem por objetivo obter soluções do sistema de equações lineares Ax = b com norma pequena, do que é proposto resolver o problema de minimização:

$$\min_{x} ||x||_2, \text{ sujeito a } ||b - Ax||_2 \leq \mathbf{T}_0$$
(3)

onde  $\mathbf{T}_0$  é o valor máximo da norma do resíduo que estamos dispostos a aceitar. Sendo assim, estamos diante de um problema de minimização com restrições de desigualdade.

No trabalho [5], o problema de minimização (3) foi aproximado por um problema de programação quadrática através de uma formulação Primal-Dual que deu origem a um método Preditor-Corretor capaz de obter uma solução para o problema de minimização (3). Este método Preditor-Corretor da origem a sistemas de equações normais que são resolvidos via método dos gradientes conjugados precondicinado com o precondiconador separador. Neste trabalho, a fim de reduzir o número de iterações de pontos interiores e do método dos gradientes conjugados precondicionado [8], propomos a utilização do precondicionador Fatoração Controlada de Cholesky [1].

## 2 Métodos de Pontos Interiores

Em [5], para desenvolver o método de pontos interiores (MPI) para o problema de regularização de Tikhonov, nós aproximamos o problema de minimização (3) pelo problema (4), que procura soluções com propriedades similares as requeridas pelo problema (3):

$$\begin{cases} \min_{\substack{x,u,v \\ \text{sujeito a}}} & \frac{\tau}{2} ||x||_2^2 + e^T (u+v) \\ \text{sujeito a} & Ax + u - v = b. \\ & (u,v) \ge 0 \text{ e } x \in \mathbb{R}^n. \end{cases}$$
(4)

Trata-se de um problema de programação quadrática com restrições lineares, onde A é uma matriz de posto completo  $m \times n$ ,  $b \in x$  são vetores colunas de dimensões apropriadas. Além disso, e é um vetor com todas as entradas iguais a 1 e u e v são variáveis não negativas. O valor  $\tau > 0$  representa um parâmetro de penalização para valores grandes de  $||x||_2$ .

Associado ao problema primal (4), temos o problema de programação quadrática dual:

$$\begin{cases} \max_{\substack{x,y,z,w \\ sujeito \ a}} & -\frac{\tau}{2} ||x||^2 + y^T b \\ \text{sujeito } a & \tau x - A^T y = 0 \\ & e - y - z = 0 \\ & e + y - w = 0 \\ & (z,w) \ge 0 \ e \ y \in \mathbb{R}^m. \end{cases}$$
(5)

Aplicando os mesmos passos de [9] aos problemas (4) e (5) obtemos um método de pontos interiores do tipo preditor-corretor cujo a estrutura é dada pelo Algoritmo 1.

3

Algoritmo 1: Etapas do PCM **Dados:**  $(x^0, u^0, v^0, y^0, z^0, w^0)$  com  $(u^0, v^0, z^0, w^0) > 0$ Resultado: Solução do PCM para  $k = 1, 2, \dots$  faça 1.  $\mu^k = \frac{u_k^T z_k + v_k^T w_k}{2n};$ 2.  $\dot{q}^{k} = r_{b}^{k} + U^{k}(e - (Z^{k})^{-1}r_{z}^{k}) + V^{k}(-e^{k} + (W^{k})^{-1}r_{w}^{k})$ 3.  $(\Theta^k)^{-1} = (Z^k)^{-1}(U^k) + (W^k)^{-1}V^k$ 4.  $\Delta x^{af} = (A^T \Theta^k A + \tau I_n)^{-1} (A^T \Theta^k \dot{q}^k + r_u^k)$ 5.  $\triangle y^{af} = \Theta^k (\dot{q}^k - A \triangle x^{af})$ 6.  $\triangle z^{af} = -r^k_{\tilde{z}} - \triangle y^{af}$ 7.  $\triangle w^{af} = \triangle y^{af} - r_w^k$ 8.  $\Delta u^{af} = -U^k e + (Z^k)^{-1} U^k r_z + (Z^k)^{-1} U^k \Delta y^{af}$ 9.  $\Delta v^{af} = -V^k e + (W^k)^{-1} V^k r_w - (W^k)^{-1} V^k \Delta y^{af}$ 10. Obtenha  $\alpha_u^{af}$ ,  $\alpha_v^{af}$ ,  $\alpha_z^{af}$  e  $\alpha_w^{af}$ 11.  $\alpha^{af} = \beta^k \min \left\{ \alpha_u^{af}, \alpha_v^{af}, \alpha_z^{af}, \alpha_w^{af} \right\}$  onde  $\beta^k \in (0, 1)$ 12.  $\mu_{af}^k = \frac{(u^k + \alpha_u^{af} \bigtriangleup u^{af})(z^k + \alpha_z^{af} \bigtriangleup z^{af}) + (v^k + \alpha_v^{af} \bigtriangleup v^{af})(w^k + \alpha_w^{af} \bigtriangleup w^{af})}{2n}$ 13.  $\sigma_k = \left(\frac{\mu_{af}^k}{\mu^k}\right)^3$ 14.  $\ddot{q} = (Z^k)^{-1} (-\sigma_k \mu^k e + \triangle U^{af} \triangle Z^{af} e) + (W^k)^{-1} (\sigma_k \mu^k e - \triangle V^{af} \triangle W^{af} e)$ 15.  $(\Theta^k)^{-1} = (Z^k)^{-1}(U^k) + (W^k)^{-1}V^k$ 16.  $\triangle x^{cc} = (A^T \Theta^k A + \tau I_n)^{-1} (A^T \Theta^k \ddot{q}^k)$ 17.  $\Delta y^{cc} = \Theta^k (\ddot{q}^k - A \Delta x^{cc})$ 18.  $\triangle z^{cc} = -\triangle y^{cc}$ 19.  $\triangle w^{cc} = \triangle y^{cc}$ 20.  $\Delta u^{cc} = (Z^k)^{-1} (\sigma_k \mu^k e - \Delta U^{af} \Delta Z^{af} e + U^k \Delta y^{cc})$ 21.  $\Delta v^{cc} = (W^k)^{-1} (\sigma_k \mu^k e - \Delta V^{af} \Delta W^{af} e - V^k \Delta u^{cc})$ 22. Obtenha a direção de descida  $d^k = d_k^{af} + d_k^{cc}$ 23. Calcule o comprimento de passo  $\alpha^k = \beta^k \min \{\rho_u, \rho_v, \rho_w, \rho_z\}$  onde:  $\beta^k \in (0,1), \text{ e } \rho_u = \min_i \left\{ -\frac{u_i^k}{\bigtriangleup u_i^k} \mid \bigtriangleup u_i^k < 0 \right\}, \, \rho_v = \min_i \left\{ -\frac{v_i^k}{\bigtriangleup v_i^k} \mid \bigtriangleup v_i^k < 0 \right\},$  $\rho_w = \min_i \left\{ -\frac{w_i^k}{\bigtriangleup w_i^k} \mid \bigtriangleup w_i^k < 0 \right\}, \ \rho_z = \min_i \left\{ -\frac{z_i^k}{\bigtriangleup z_i^k} \mid \bigtriangleup z_i^k < 0 \right\};$ 24.  $(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}) = (\mathbf{x}_k, \mathbf{y}_k) + \alpha^k d^k$ fim

4

Neste algoritmo valem as seguintes igualdades:  $\alpha_u^{af} = \operatorname{argmax} \left\{ \alpha \in (0,1] : u^k + \alpha \Delta u^{af} > 0 \right\}, \alpha_v^{af} = \operatorname{argmax} \left\{ \alpha \in (0,1] : v^k + \alpha \Delta v^{af} > 0 \right\}, \alpha_z^{af} = \operatorname{argmax} \left\{ \alpha \in (0,1] : z^k + \alpha \Delta z^{af} > 0 \right\}, \alpha_w^{af} = \operatorname{argmax} \left\{ \alpha \in (0,1] : w^k + \alpha \Delta w^{af} > 0 \right\}, Z^k = diag(z_1^k, z_2^k, \dots, z_m^k), U^k = diag(u_1^k, u_2^k, \dots, u_m^k), W^k = diag(w_1^k, w_2^k, \dots, w_m^k), V^k = diag(v_1^k, v_2^k, \dots, v_m^k), r_b^k = b - Ax^k - u^k + v^k, r_y^k = A^T y^k - \tau x^k, r_z^k = z^k + y^k - e e r_w^k = w^k - y^k - e.$ 

Na etapa 4 do Algoritmo 1 nos deparamos com sistemas de equações normais. Para resolver tais sistemas utilizamos o Método dos Gradientes Conjugados Precondicionado (MGCP) [8].

Nós implementamos duas versões do Algoritmo 1, a primeira versão utilizando o precondicionador separador desenvolvido em [3]. Vamos nos referir a esta combinação como MPCLU. A segunda versão foi implementada utilizando a Fatoração Controlada de Cholesky proposta por [1]. A esta combinação iremos nos referir como MPCFCC.

Mais detalhes sobre as formulações MPCLU e MPCFCC podem ser encontras em [4].

#### 3 Resultados Numéricos

Todos os resultados numéricos foram desenvolvidos em MATLAB R2013b com sistema operacional 64-bit Windows 10, processador Intel Core I7-8550U, 1.99 Ghz, 16 GB de memória RAM. Os códigos para calcular a discretização dos exemplos deste trabalho provêm dos pacotes disponibilizados em [2]. Consideramos que o lado direito dos sistemas está contaminado por ruídos, ou seja,  $b = \overline{b} + \mathbf{e}$ , em que  $\mathbf{e}$  refere-se a um vetor aleatório normalizado escolhido de tal forma que  $||\mathbf{e}||/||\overline{b}|| = \epsilon > 0$ . Iremos nos referir ao quociente  $NL = ||\mathbf{e}||/||\overline{b}||$  como nível de ruído. Para os testes numéricos assumimos  $\tau = 5 \times 10^{-3}$ .

A fim de comparar a eficiência do MPCFCC e do MPCLU, iremos comparar os resultados obtidos por ambos os métodos na resolução dos problemas de teste Baart, Shaw e Phillips com níveis de ruído  $NL = 10^{-3}$ ,  $NL = 10^{-4}$  e  $NL = 10^{-3}$  respectivamente. Nós testamos ambos os métodos para várias dimensões dos problemas de teste. Apresentamos os resultados nas tabelas a seguir:

|          |    |       | <u>-</u>               |                        |                        |
|----------|----|-------|------------------------|------------------------|------------------------|
| Dimensão | It | Itgcp | Erd                    | Eri                    | $t_{cpu}$              |
| 250      | 8  | 148   | $1,158 \times 10^{-1}$ | $2,403 \times 10^{-4}$ | $2,809 \times 10^{-1}$ |
| 500      | 9  | 129   | $1,201 \times 10^{-1}$ | $1,635 \times 10^{-4}$ | $6,022 \times 10^{-1}$ |
| 1000     | 10 | 131   | $7,760 \times 10^{-2}$ | $5,332 \times 10^{-5}$ | $2,841 \times 10^{+0}$ |
| 2000     | 10 | 131   | $1,058 \times 10^{-1}$ | $4,386 \times 10^{-4}$ | $2,312\times10^{+1}$   |
| 5000     | 11 | 147   | $1,101 \times 10^{-1}$ | $2,134\times10^{-5}$   | $5,811 \times 10^{+2}$ |

Tabela 1: MPCFCC aplicado à matriz de Baart.

Tabela 2: MPCLU aplicado à matriz de Baart.

| Dimensão | It | Itgcp | Erd                    | Eri                    | $t_{cpu}$              |
|----------|----|-------|------------------------|------------------------|------------------------|
| 250      | 9  | 148   | $1,145\times10^{-1}$   | $2,204\times10^{-4}$   | $4,127 \times 10^{-1}$ |
| 500      | 11 | 158   | $1,300\times10^{-1}$   | $1,657\times 10^{-4}$  | $5,723 \times 10^{-1}$ |
| 1000     | 10 | 164   | $1,573\times10^{-1}$   | $6,239 \times 10^{-5}$ | $1,742 \times 10^{+0}$ |
| 2000     | 12 | 201   | $7,130\times10^{-2}$   | $3,557\times10^{-5}$   | $8,885 \times 10^{+0}$ |
| 5000     | 10 | 165   | $8,060 \times 10^{-2}$ | $3,120 \times 10^{-5}$ | $5,365 \times 10^{+1}$ |

| Tabela 3: MPCFCC aplicado à matriz de Sha | ιw. |
|-------------------------------------------|-----|
|-------------------------------------------|-----|

|          |    |       | 1                      |                        |                        |
|----------|----|-------|------------------------|------------------------|------------------------|
| Dimensão | It | Itgcp | Erd                    | Eri                    | $t_{cpu}$              |
| 250      | 13 | 332   | $3,250 \times 10^{-2}$ | $1,474 \times 10^{-5}$ | $3,200 \times 10^{-1}$ |
| 500      | 13 | 332   | $3,360 \times 10^{-2}$ | $9,887 \times 10^{-6}$ | $7,339 \times 10^{-1}$ |
| 1000     | 14 | 354   | $3,340 \times 10^{-2}$ | $8,180 \times 10^{-6}$ | $3,478 \times 10^{+0}$ |
| 2000     | 14 | 343   | $3,350 \times 10^{-2}$ | $6,793 \times 10^{-6}$ | $2,598 \times 10^{+1}$ |
| 3000     | 15 | 372   | $3,310 \times 10^{-2}$ | $6,273 \times 10^{-7}$ | $8,920 \times 10^{+1}$ |

Tabela 4: MPCLU aplicado à matriz de Shaw.

| Dimensão | It | Itgcp | Erd                    | Eri                    | $t_{cpu}$              |
|----------|----|-------|------------------------|------------------------|------------------------|
| 250      | 12 | 344   | $3,170 \times 10^{-2}$ | $1,283 \times 10^{-5}$ | $4,074 \times 10^{-1}$ |
| 500      | 12 | 337   | $3,450 \times 10^{-2}$ | $1,144 \times 10^{-5}$ | $8,760 \times 10^{-1}$ |
| 1000     | 15 | 396   | $3,230 \times 10^{-2}$ | $5,710 \times 10^{-6}$ | $4,019 \times 10^{+0}$ |
| 2000     | 14 | 356   | $3,310 \times 10^{-2}$ | $7,223 \times 10^{-6}$ | $1,500 \times 10^{+1}$ |
| 3000     | 15 | 382   | $3,360 \times 10^{-2}$ | $6,546 \times 10^{-6}$ | $3,363 \times 10^{+2}$ |

Tabela 5: MPCFCC aplicado à matriz de Phillips.

| Dimensão | It | Itgcp | Erd                    | Eri                    | $t_{cpu}$              |
|----------|----|-------|------------------------|------------------------|------------------------|
| 252      | 9  | 285   | $1,180 \times 10^{-2}$ | $6,052 \times 10^{-4}$ | $2,707 \times 10^{-1}$ |
| 504      | 11 | 377   | $1,440 \times 10^{-2}$ | $5,890 \times 10^{-4}$ | $6,451 \times 10^{-1}$ |
| 1024     | 12 | 417   | $1,480 \times 10^{-2}$ | $3,644 \times 10^{-4}$ | $3,200 \times 10^{+0}$ |
| 2048     | 13 | 502   | $1,210 \times 10^{-2}$ | $4,740 \times 10^{-4}$ | $2,557 \times 10^{+1}$ |
| 4096     | 12 | 458   | $1,120 \times 10^{-2}$ | $4,235 \times 10^{-4}$ | $2,876 \times 10^{+2}$ |

Tabela 6: MPCLU aplicado à matriz de Phillips.

| Dimensão | It | Itgcp | Erd                    | Eri                  | $t_{cpu}$              |
|----------|----|-------|------------------------|----------------------|------------------------|
| 252      | 10 | 385   | $1,000 \times 10^{-2}$ | $3,143\times10^{-4}$ | $3,817 \times 10^{-1}$ |
| 504      | 11 | 429   | $1,250 \times 10^{-2}$ | $3,563\times10^{-4}$ | $9,546 \times 10^{-1}$ |
| 1024     | 12 | 458   | $9,000 \times 10^{-3}$ | $3,182\times10^{-4}$ | $4,547 \times 10^{+0}$ |
| 2048     | 13 | 512   | $1,170 \times 10^{-2}$ | $3,919\times10^{-4}$ | $2,302\times10^{+1}$   |
| 4096     | 12 | 466   | $1,160 \times 10^{-2}$ | $5,213\times10^{-4}$ | $1,038\times10^{+2}$   |

 $\mathbf{6}$ 

A primeira coluna das tabelas nos informa a dimensão das matrizes, a segunda coluna fornece o número de iterações de métodos de pontos interiores que foram necessárias para resolver o problema, ao passo que a terceira fornece o número de iterações do MGCP necessárias durante toda a execução do método de pontos interiores em questão. Uma vez que a solução exata  $\mathbf{x}$  é conhecida, as colunas Erd e Eri representam respectivamente os erros relativos cometidos: Erd= $||\mathbf{x}^k - \mathbf{x}||_2/||\mathbf{x}||_2$  e Eri= $||A\mathbf{x}^k - b||_2/||b||_2$ . Por fim,  $t_{cpu}$  representa o tempo em segundos demandados pelo método para resolução do problema.

Para o problema de Baart as iterações de MPI e iterações de MGCP do método MPCFCC se mostrou competitivo com o método MPCLU, ele também se mostrou competitivo no quesito tempo computacional, exceto para ordem n = 5000.

Já para o problema de teste Shaw, o número de iterações de ponto interior e de MGCP dos métodos MPCFCC e MPCLU tiveram resultados bem próximos e podemos dizer o mesmo com relação à precisão dos resultados alcançados pelos mesmos. Na maior parte dos casos, o tempo de processamento do MPCFCC obteve resultados melhores do que o método MPCLU.

Por fim, para o problema de Phillips o número iterações de MPI foram os mesmos em quase todos os casos. Mas, o número de iterações de MGCP foram menores em todos os casos. No entanto, os resultados de tempo de processamento  $t_{cpu}$  do MPCFCC se tornaram maiores do que os do MPCLU a partir da ordem n = 2048. Isto se deve à necessidade de atualizar o precondicionador Fatoração Controlada de Cholesky quando o mesmo perde eficiência.

## 4 Conclusões

Neste trabalho, o cálculo das direções de busca do método Preditor-Corretor nos levaram a sistemas de equações normais. Estes sistemas de equações normais foram resolvidos pelo Método dos Gradientes Conjugados Precondicionado. Sendo os precondicionadores utilizados o Precondicionador Separador e a Fatoração Controlada de Cholesky.

De modo geral podemos dizer que o MPCLU e o MPCFCC obtiveram ordem de precisão das soluções bastante similares. Também, o número de iterações de MPI de ambos os métodos se mostraram bem próximos para os exemplos utilizados. No entanto, na maior parte dos casos o método MPCFCC obteve êxito em diminuir o número de iterações de MGCP no decorrer das iterações de MPI.

Concluímos que embora sejam necessários mais testes, os resultados obtidos com a implementação dos métodos no software MATLAB, mostram que o MPCFCC pode ser competitivo com o MPCLU.

# Referências

- Campos, F. F. Analysis of conjugate gradient-type methods for solving linear equations, Tese deDoutorado, University of Oxford, 1995.
- [2] Hansen, P. C. Regularization tools version 4.0 for matlab 7.3. Numer. Algorithms, volume 46, pages 189–194, 2007. DOI: 10.1007/s11075-007-9136-9.
- [3] Oliveira, A. R. L.; Sorensen, D. A new class of preconditioners for large-scale linear systems from interior point methods for linear programming, *Linear Algebra and its applications*, Elsevier, volume 394, pages 1–24, 2005. DOI: 10.1016/j.laa.2004.08.019.
- [4] Portilho Jr, E. S. Métodos de pontos interiores para resolução de problemas de regularização de Tikhonov de grande porte, Tese de Doutorado, Unicamp, 2020.

7

- [5] Portilho Jr, E. S.; Oliveira, A. R. L. Métodos de pontos interiores para resolução de problemas de regularização de Tikhonov de grande porte, Anais do X Encontro Regional de Matemática Aplicada e Computacional do Rio Grande do Sul – ERMAC-RS, 2020. ISBN: 978-65-5623-103-7
- [6] Rezghi, R. and Hosseini, S. M. A new variant of l-curve for tikhonov regularization, Journal of Computational and Applied Mathematics, Elsevier, volume 231, pages 914–924, 2009. DOI: 10.1016/j.cam.2009.05.016.
- [7] Tikhonov, A. N.; Aarsenin, V. Y. Solution of ill-posed problems. V.H. Winston & Sons, Washington DC, 1977.
- [8] Trefethen, L. N.; Bau, D. Numerical Linear Algebra. Society for Industrial and Applied Mathematics, 1997.
- [9] Zhang, Y. A primal-dual interior point approach for computing  $l_1$  and  $l_{\infty}$  solutions of overdetermined linear systems, J. Optim. Theory Appl., volume 77(2), pages 323–341, 1993. DOI:10.1007/BF00940715.