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B1-EPG representations using block-cutpoint trees
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Abstract. In this paper, we are interested in the edge intersection graphs of paths of a grid where
each path has at most one bend, called B1-EPG graphs and first introduced by Golumbic et al
(2009). We also consider a proper subclass of B1-EPG, the x-EPG graphs, which allows paths only
in “x” shape. We show that two superclasses of trees are B1-EPG (one of them being the cactus
graphs). On the other hand, we show that the block graphs are x-EPG and provide a linear time
algorithm to produce x-EPG representations of generalization of trees. These proofs employed a
new technique from previous results in the area based on block-cutpoint trees of the respective
graphs.
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1 Introduction

Let P be a family of nontrivial paths on a rectangular grid G. We define the edge intersection
graph EPG(P) of P as the graph whose vertex set is P and such that (P,Q) is an edge of EPG(P)
if and only if paths P and Q share at least one grid edge of G. A graph G is called an edge
intersection graph of paths on a grid (EPG) if G = EPG(P) for some family of paths P on a grid
G, and P is an EPG representation of G. EPG graphs were first introduced by Golumbic et al in [6]
motivated from circuit layout problems [4]. Figure 1 illustrates the EPG-graph corresponding to
the family of paths presented in the figure.

Figure 1: A B2-EPG representation P and its corresponding EPG graph EPG(P).

A turn of a path at a grid point is called a bend and the grid point in which a bend occurs is
called a bend point. An EPG representation is a Bk-EPG representation if each path has at most k
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bends. A graph that has a Bk-EPG representation is called Bk-EPG. Therefore, the graph defined
in Figure 1 is B2-EPG, as the representation shows. However, it is possible to show that there is
a B1-EPG representation of G and, thus, G is also B1-EPG. The time complexity of recognizing
Bk-EPG is polynomial for k = 0 [6], and NP-hard for k = 1 [8] and k = 2 [10], whereas is unknown
for other values of k.

A block B of a graph G is a maximal biconnected subgraph of G. A vertex v of a connected
graph G is a cut vertex if G−v is disconnected. For a graph G, we define its block-cutpoint tree [7]
(BC-tree) T as follows. There is a vertex in T corresponding each block of G, called a block vertex,
and a vertex for each cut vertex of G, called as such in T . A cut vertex c forms an edge with a
block vertex b if the block corresponding to b contains c in G. The only existing vertices and edges
of T are those previously described. Figure 2 depicts a graph and its respective BC-tree.

(a) (b)

Figure 2: A graph and its respective BC-tree. The cut vertices are marked in red.

A universal vertex is a vertex of G that is adjacent to all other vertices of G. For X ⊆ V (G),
we denote by G[X] the subgraph induced by X. A cycle with k vertices is denoted by Ck.

In B1-EPG representations, each path has one of the following shapes: x, p, y, q, besides hori-
zontal or vertical segments. One may consider more restrictive subclasses of B1-EPG by limiting
the type of bends allowed in the representation. This arises the definition of “x”-EPG graphs,
where “x” stands for a sequence of path shapes allowed in the class. For example, the xq-EPG
graphs are those in which only the “x” or the “q” shapes are allowed. Although that might imply
the study of 24 different subclasses, corresponding to all subsets of {x, p, y, q}, only the x-EPG,
yx-EPG, xq-EPG and xpq-EPG may be considered, since all others do not define distinct subclasses
(their representations are isomorphic to these four up to 90 degree rotations and reflections).

2 A B1-EPG representation of a superclass of trees

In this section, we describe a B1-EPG representation of a superclass of trees, inspired on the
representation of trees described in [6]. The novelty of the following results are the usage of
BC-trees to obtain EPG representations.

Theorem 1. Let G be a graph such that every block of G is B1-EPG and every cut vertex v of G
is a universal vertex in the blocks of G in which v is contained. Then, G is B1-EPG.
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Proof. The result is trivial if G does not have cut vertices, since G consists of a single block.
Therefore, we assume from now on that there is a cut vertex in G. The theorem is proved by
induction. Actually, we prove a stronger claim, stated as follows: given any graph G satisfying
the theorem conditions and a BC-tree T of G rooted at some cut vertex r, there exists a B1-EPG
representation R = {Pv | v ∈ V (G)} of G in which:

(i) Pr is a vertical path with no bends in R;

(ii) all paths but Pr are constrained within the horizontal portion of the grid defined by Pr and
at the right of it.

Let B1, B2, . . . , Bt be the block vertices which are children of r and let Ti1, Ti2, . . . , Tiji be
the subtrees rooted at Bi, for all 1 ≤ i ≤ t (see Figure 3). The leaves of T are the blocks of G
having exactly one cut vertex. From T , build the representation R of G as follows. First, build an

. . .

. . . . . .

r

B1 Bt

T11 T12 T1j1
Tt1 Tt2 Ttjt

Figure 3: The rooted BC-tree T of a graph.

arbitrary vertical path Pr in the grid G, corresponding the root r. Next, divide the vertical portion
of G defined by Pr and at the right of it into t vertical subgrids, G1,G2, . . . ,Gt, with a row space
between them such that the i-th subgrid will contain the paths corresponding to the cut vertices
that are descendants of Bi in T . So, each subgrid Gi is constructed as follows. We first represent
the children of Bi as disjoint x-shaped paths, all sharing the same grid column in which Pr lies,
since by the hypothesis, the children of Bi are all adjacent to r. Now, for each Bi, we build the
following paths:

- those corresponding to vertices of Bi that are not cut vertices of G (as those vertices in black
in Figure 2(a)); let us call the set of such vertices as B′

i;

- those belonging to the induced subgraphs of G corresponding to the BC-trees Ti1, Ti2, . . . , Tiji .

These paths will be placed on the marked regions of Gi of Figure 4. So, it remains to define how
the paths belonging to the regions B′

i and Tij will be build, for all 1 ≤ j ≤ ji.
So, by the claim hypothesis, r is universal to Bi and Bi is a B1-EPG graph. Therefore, let

R′ be a B1-EPG representation of Bi. Without loss of generality, considering the operation of
rotating the representation, let P ′

r be an x-path corresponding r in R′ and let p be its bend point.
Since r is universal to Bi, all other paths must share a grid edge with P ′

r. Transform R′ in the
following way:

- For all P ′
z, a path of R′ that intersects all other paths of R′ and is not coincident to P ′

r,
modify P ′

z by making it coincident to P ′
r.
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Figure 4: A subgrid Gi.

- For all P ′
z, a path of R′ which contains p and the grid point immediately below of p, modify

P ′
z by removing the part of the path that goes from p downwards (that is, making p an

endpoint of P ′
z). Such a modification does not change the intersections of P ′

z. Clearly, by
construction, it does not increase the intersections. To see that it does not decrease as well,
note that if P ′

z lost an edge intersection to some path P ′
w, it is because P ′

w would intersect
P ′
z only in the “leg” that was removed, which would imply that P ′

w does not intersect P ′
r, an

absurd.

- For all P ′
z, a path of R′ which contains p and the grid point immediately at the left of p,

modify P ′
z in an analogous way, removing the part of the paths that are to the left of p.

Finally, R′ can be transformed such that all universal vertices become vertical paths, by “un-
bending” them at the grid point p (see Figure 5).

Figure 5: Transformations of P ′
z.

For the Tij portion of the representation, let rij be the root of Tij . Applying induction hypoth-
esis, we obtain B1-EPG representations of each subtree that have vertical paths representing each
root and the entire representation is bounded as described previously in (ii). Thus, we can clearly
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attach each one of the representations to its respective portion of the model being built, rotated
90 degrees in counter-clockwise (see Figure 6). This concludes the proof.

(a) (b)

Figure 6: B1-EPG representation of G after induction step.

It is assumed in Theorem 1 that the blocks of G are B1-EPG. If, instead, it is assumed that the
blocks of G are x-EPG, we get an x-EPG representation of a superclass of trees. The representation
to be shown yields a distinct x-representation of trees of the one described in [6].

Theorem 2. Let G be a graph such that every block of G is x-EPG and every cut vertex v of G
is a universal vertex in the blocks of G in which v is contained. Then, G is x-EPG.

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1.
However, the assumption that every block Bi is x-EPG allows their EPG representations to be
transformed into interval models. It is possible to show how to build an interval model of each
block, given an x-EPG representation of it. Furthermore, the EPG representations of the subtrees
Ti1, Ti2, . . . , Tiji of Bi, for all i, obtained after the induction step can be transformed into x-EPG
models by 90 degree clockwise rotation so that the entire representation is x-EPG.

A graph G is a block graph if every block of G is a clique. As a corollary of Theorem 2, block
graphs are B1-EPG, a result proved in [1] using a proof by contradiction. Besides stronger, our
proof is constructive, in the sense that it provides an x-EPG representation.

Corollary 1. Block graphs are x-EPG.

It is known that trees are x-EPG. In [6], the authors described a recursive procedure to construct
an x-EPG representation of them. Note that trees are in particular block graphs and therefore can
also be represented with the construction of Theorem 2. As an example, compare the resulting
representations of both constructions, considering the tree T in Figure 7. The x-EPG representation
of T described in [6] is shown in Figure 8(a). And the x-EPG representation of T given by
Theorem 1 is shown in Figure 8(b).

Finally, note that the induction proof of Theorem 2 yields a recursive algorithm to produce an
x-EPG representation given as input a graph G holding the theorem conditions. This algorithm
can be recognized in linear time, since the recognition of interval graphs (needed in order to obtain
a model of each B′

i defined in the theorem’s proof) can be done in linear time [3].
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Figure 7: Tree T .

(a) (b)

Figure 8: (a) x-EPG representation of T . (b) Alternative x-EPG representation of T .

3 A B1-EPG representation of cactus graphs

A cactus is a connected graph in which every block is either an edge or a cycle. So, cactus
graphs are another generalization of trees. In [5], the authors showed that a cactus is py-EPG. In
this section, we provide an alternative construction that yields B1-EPG representations of a cactus
using BC-trees.

Theorem 3. Cactus graphs are B1-EPG.

Proof. (Sketch) This proof follows the same reasoning lines as those in the proof of Theorem 1.
The difference here is that every block is either an edge or a cycle. It is possible therefore to
construct B1-EPG representations of every block Bi. Furthermore, the B1-EPG representations of
the subtrees Ti1, Ti2, . . . , Tiji of Bi, for all i, obtained after the induction step can be shown possible
to be attached into vertical or horizontal regions of the cycle/edge so that the entire representation
is B1-EPG.

It is known that the class of outerplanar graphs, which is a superclass of cactus graphs, is
B2-EPG. It was conjectured by Biedl and Stern in [2] and proved by Heldt, Knauer and Ueckerdt
in [9]. See an example of an outerplanar graph and its B2-EPG representation in Figure 9.
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Figure 9: Outerplanar graph and its B2-EPG representation (see [9]).

4 Conclusion

In this paper, we showed a B1-EPG representation of graphs in which every block is B1-EPG
and every cut vertex is a universal vertex in the blocks to which it belongs. We extend the proof
to show that cactus graphs are also B1-EPG. We also showed a linear-time algorithm to construct
x-EPG representations of graphs in which every block is x-EPG and every cut vertex is a universal
vertex in the blocks to which it belongs, concluding that block graphs are x-EPG. The latter result
provides an alternative x-EPG representation for trees.
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