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André, SP, Brazil

Emilio Francesquini 2

Center of Mathematics, Computing and Cognition–CMCC, Federal University of ABC–UFABC, Santo
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Abstract. The reliability of a multistate flow network (MFN) can be evaluated indirectly based
on d-minimal paths (d-MPs). In fact, with all the d-MPs at hand, an MFN’s reliability can be
computed by calculating a union probability. Hence the determination of all d-MPs in an MFN
has been a very attractive problem in the last decades. As a result, many algorithms have been
proposed to solve the d-MP problem. However, as the number of d-MPs grows exponentially with
the size of the network, the available algorithms in the literature are not so practical. Here, we
propose a vectorization algorithm to address the problem and show its practical efficiency using
three benchmarks. The numerical results show that the vectorization algorithm solves the problem
more than three times faster than the non-vectorization one in some cases.

Keywords. System reliability, Vectorization algorithm, d-MP problem, Multistate flow network

1 Introduction

A multistate flow network (MFN), which is also called a stochastic-flow network, is a network
flow whose components, including nodes and arcs, can have more than two different states or
performance levels [9]. The reliability of a two-terminal MFN for demand level of d, denoted by
Rd, is defined as the probability of transmitting at least d units of data (flow or goods) from a
source node to a destination node in the network [8]. There are many real-world systems such as
transportation networks, computer and communication networks, distribution systems, and power
transmission systems that can be modeled as an MFN. This is why the problem of reliability
evaluation of MFNs has turned to be of great importance [2]. The reliability of two-terminal MFN
can be evaluated indirectly in terms of minimal paths (MPs) [2, 4, 6, 7, 13, 14, 16, 18] or minimal
cuts (MCs) [3, 5, 8–11,15] through a three-stage process; (1) determining all the MPs or MCs, (2)
finding all the d-MPs or d-MC s, which are called the d-MP or d-MC problem, and (3) calculating
a union probability as the network reliability. The focus of this work is on the second stage and
the d-MP problem, and hence we assume that all the MPs are available in advance. A path in a
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network is a sequence of adjacent arcs from a source node to a sink node, and an MP is a path so
that none of its proper subsets is a path. Several authors have worked to improve the solution of
the d-MP problem. Based on a breadth-first search technique, Chen et al. [2] proposed a recursive
algorithm for the determination of all the d-MPs for all the demand values d. Yeh and Zuo [18]
proposed a subtraction-based algorithm to find all the d-MPs for all the d values and showed its
practical efficiency in comparison with some addition-based algorithms in the literature.

However, to the best of our knowledge, there are no vectorization algorithms proposed in the
literature to address this problem. Hence, in this work, we propose a vectorization algorithm based
on the available algorithms in the literature and show its practical efficiency by employing three
benchmarks taken from the literature.

The remaining of the paper is organized as follows. Section 2 introduces the required notations
and definitions along with some preliminaries and explanations. Then, in Section 3, a background
on the vectorization process is presented. Next, experimental results are outlined in Section 4.
Finally, we conclude in Section 5.

2 The d-MP problem

Let G = G(N,A,M) be an MFN, where N = {1, 2, · · · , n} is the set of nodes with nodes 1
and n being the source and destination nodes, respectively, A = {ai| 1 ≤ i ≤ m} is the set of
arcs, and M = (M1,M2, · · · , Mm) is a vector in which Mi gives the maximum capacity of arc
ai, for i = 1, 2, · · · ,m. The vector X = (x1, x2, · · · , xm) is a state vector in which xi represents
the current capacity of ai, for i = 1, 2, · · · ,m. Let V (X) be the maximum flow of the network
from the source node to the destination node under system vector X. Z(X) = {ai ∈ A|xi > 0}
and ei = 0(ai) be a system vector in which the capacity level is 1 for ai and 0 for other arcs.
Let also P1, P2, · · · , Ph be all the MPs in the network (so h is the number of all the MPs) and
Kj = min{Mr|ar ∈ Pj} be the capacity of the jth MP, for j = 1, 2, · · · , h. Finally, we note that a
system state X = (x1, x2, · · · , xm) is said less than or equal to system state Y = (y1, y2, · · · , ym),
i.e., X ≤ Y , when xi ≤ yi , for i = 1, 2, · · · ,m, and also X < Y , when X ≤ Y and there exists at
least one j, j = 1, 2, · · · ,m, such that xj < yj . For instance, in the given network in Fig. 1a, we
have N = {1, 2, 3, 4} and A = {a1, a2, a3, a4, a5}. Assuming M = (3, 1, 1, 2, 2), any non-negative
integer-valued vector (x1, x2, x3, x4, x5) ≤ M can be considered as a system vector. We also have
four MPs, P1 = {a1, a4}, P2 = {a1, a3, a5}, P3 = {a2, a5}, and P4 = {a2, a3, a4} in this network.
So, considering M = (3, 1, 1, 2, 2), it is easy to see that K1 = 2, K2 = 1, K3 = 1 and K4 = 1.
Next, we have three definitions from the literature [7, 16].

(a) A small size netwok. (b) A medium size network.

Figure 1: Two known benchmark networks of small and medium size taken from the literature [4].
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Definition 2.1. Assuming fj as the amount of flow on MP Pj, for j = 1, · · · , h, the vector
F = (f1, f2, · · · , fh) is called a feasible flow vector (FFV) at demand level d, denoted by d-FFV
here, when it satisfies the following system.

(i) f1 + f2 + · · ·+ fh = d,
(ii) 0 ≤ fj ≤ min{Kj , d}, j = 1, 2, · · · , h,
(iii)

∑
j: ai∈Pj

fj ≤ min{Mi, d}, i = 1, 2, · · · ,m,
(1)

For instance, it can be calculated that F = (1, 1, 1, 0) is a 3-FFV in the network given in
Fig. 1a.

Definition 2.2. A state vector X = (x1, x2, · · · , xm) is d-MP if and only if the following system
is satisfied.

(i) V (X) = d,
(ii) V (X − ei) = d− 1, for each i that ai ∈ Z(X).

(2)

For instance, it can be seen that X = (2, 1, 1, 1, 2) is a 3-MP in the network given in Fig. 1a.

Definition 2.3. A system vector X = (x1, x2, · · · , xm) is called a d-MP candidate when there is
a d-FFV, say F = (f1, · · · , fh), that satisfies the following relation:

xi =
∑

j: ai∈Pj

fj , ∀i = 1, 2, · · · ,m. (3)

In fact, the obtained d-MP candidate from a d-FFV through Eq. (3) is called the associated
d-MP candidate with that d-FFV. For instance, in Fig. 1a, X = (2, 1, 1, 1, 2) is a 3-MP candidate
which can be obtained from F = (1, 1, 1, 0). It is notable that this vector is also a (real) 3-MP.
The following result, which is proven in [14], shows that it always happens.

Theorem 2.1. Every d-MP is a d-MP candidate.

Although one can use the given condition in Definition 2.2 to check each candidate for being
a d-MP, Lin and his coworkers [14] proposed the following theorem which can be employed to
determine all the d-MPs among the candidates.

Theorem 2.2. The set of all the minimal elements among all the d-MP candidates is equal to the
set of all the d-MPs.

We note that a vector X ∈ Ψ is a minimal vector if there is no other vector Y ∈ Ψ such that
Y < X, namely, X is not necessarily less than all the vectors in Ψ; however, there is no another
vector in Ψ less than it. Therefore, one can first find all the d-MP candidates by solving the
Diophantine system (1) and using Eq. (3), then remove the possible duplicates, and finally remove
all the non-minimal vectors to determine the set of all the d-MPs. Notice that one can remove all
the duplicates and non-minimal vectors at once, but it is less efficient in practice, as our numerical
results here show. Hence, the following algorithm can be considered as a slightly improved version
of the proposed algorithm by Lin et al. [14].

Algorithm 1
Step 1. Find all the d-FFV s by solving the system (1).
Step 2. Compute the associate d-MP candidate, i.e., X, with each d-FFV obtained in Step 1
through (3).
Step 3. Remove the duplicate candidates obtained in Step 2.
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Step 4. Remove the non-minimal candidates.

We note that several algorithms, which are more efficient than Algorithm 1, have been proposed
in the literature. However, in this paper, we focus on the impact which vectorization techniques
can have on the d-MP problem algorithms. Therefore, in this case, the choice of algorithm is
arbitrary as any of them would be adequate to generate the experimental evaluation results shown
in Section 4.

3 Vectorization

Vectorization can be described as the process of converting the application of an operation to
a single value (a scalar) to the application of the same operation to multiple values (a vector)
at once. It is, therefore, a parallelization technique that can improve the performance of many
kinds of computer loads. It should not be confused with the application of standard parallelization
techniques, which use multiple processors to achieve similar results since vector operations happen
in the context of a single processor [17].

Vector processors have existed in one form or another since the ’70s, and virtually all modern
processors provide some form of SIMD (Single Instruction Multiple Data) capabilities. Intel x86,
for example, offers multiple versions of their SSE and AVX extensions. Other processor vendors
such as ARM also provide extensions such as Neon. More recently, GPUs have also begun to
include vector instructions [12].

Invariably all these approaches work using long registers that are usually several times the size
of regular registers used for scalar operations. While 128 and 256-bit registers are commonplace,
4096-bit registers are also available in some specialized architectures. Let us consider 256-bit vector
registers. Typical integers are stored in 32 bits which means that the time it takes to, for instance,
sum a pair of integers using scalar operations is the same as summing eight pairs of integers when
using vector instructions.

Most optimizing compilers and numeric computing suites such as Mathematica, MATLAB,
and NumPy offer some support for SIMD operations. However, effectively and automatically
vectorizing code that was not explicitly written to profit from these SIMD instructions is still a
very active research problem in Computer Science.

In this work, we leverage vectorization explicitly, using 128-bit vectors on a commodity processor
to improve the algorithm’s performance.

4 Numerical results

Here, we make several numerical comparisons between the three algorithms. The first one (A1 )
is Algorithm 1. The second one (MA) is an improved version of Algorithm 1 in which steps 2 and
3 are merged so that no duplicate candidate is generated. The third algorithm (VMA) is the
vectorized version of the second one.

All the experiments were done on a computer Intel(R) Core(TM) i7-7500U CPU 2.7 GHz,
with 16 GB of RAM. We employ three benchmark networks taken from the literature given in
Figs. 1b, 2a and 2b. The maximum capacities of arcs in all of these benchmarks are set to be 3,
i.e., Mi = 3.

All the generated results are summarized in Tables 1 and 2. The columns in the tables are d,
the demand value, ncan, the number of candidates, nd−MP , the number of d-MPs. Also, tA1, tMA,
tVMA are respectively the running times of A1, MA and VMA. We note that Table 2 provides the
related results to the general network in Fig. 2b whose size varies with u, and the first column
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(a) The NSF benchmark. (b) The general network topology.

Figure 2: The NSF benchmark and a general network topology taken from the literature [4, 7].

Table 1: The final results on the benchmarks given in Figs. 1b and 2a

Benchmarks d ncan nd−MP tA1 (s) tMA (s) tVMA (s) tMA/tVMA

Fig. 1b 4 76530 8071 474,18 ± 0,25 3.52 ±0.02 1.63 ± 0.00 2.16
Fig. 1b 5 180266 12292 14,15 ± 0,07 16.31 ±0.15 5.84 ± 0.01 2.79
Fig. 1b 6 220762 12639 197,47 ± 0,07 21.54 ±0.13 7.99 ± 0.04 2.70
Fig. 1b 7 149408 7350 958,25 ± 0,38 9.76 ±0.08 4.95 ± 0.02 1.97
Fig. 1b 8 62748 3011 1354,26 ± 4,93 4.58 ±0.04 3.98 ± 0.04 1.15

Geo. Mean 2.06

Fig. 2a 4 616152 18950 717,18 ± 1,13 132.95 ±0.33 38.80 ± 0.07 3.43
Fig. 2a 5 1069403 20153 3413,77 ± 1,24 229.83 ±0.34 70.49 ± 0.10 3.26
Fig. 2a 6 689297 12387 5006,83 ± 2,45 100.61 ±0.21 39.40 ± 0.06 2.55
Fig. 2a 7 193204 3109 1371,52 ± 0,27 25.69 ±0.05 21.85 ± 0.21 1.18
Fig. 2a 8 24170 438 78,41 ± 0,05 25.25 ±0.10 25.31 ± 0.20 1.00

Geo. Mean 2.02

Full Geo. Mean 2.04

in this table, u, lists the parameter used to generate the corresponding network. Comparing the
running times of the three algorithms given in Table 1 clearly shows the practical efficiency of MA
and VMA compared with A1. Hence, we did not run A1 on the general network topology resulting
in the absence of column tA1 in Table 2. The presented results in the tables are an average of at
least ten executions. The standard deviation of the samples is presented alongside the average.
Notice that MA employs a radix-tree with a branching factor of M to merge steps 2 and 3 in
A1. Therefore, in O(logMncan) steps, it can determine if a newly generated candidate was already
known. Computationally, this is more efficient than generating all candidates and then removing
duplicates, not due to lower algorithmic complexity, but because of the savings in memory usage
for the temporary storage of duplicates, and thus a more efficient use of the processor caches. This
approach’s effect can be seen in the number of candidates, ncan, and execution times. For instance,
in the network given in Figure 1b, considering d = 4, ncan is lower than the respective value when
d = 5 (76530 vs. 180266). The results provided in tables 1 and 2 clearly show the practical
efficiency of VMA in comparison with the other ones. Notice that, as the number of candidates or
d-MPs increases, so does VMA’s performance due to more efficient use of vectorization.

The performance bottleneck of the current implementation is in the fourth step of Algorithm 1,
i.e., the removal of the non-minimal candidates. More than 95% and 75% of the execution times
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Table 2: The final results on the general network topology given in Fig. 2b.

u d ncan nd−MP tMA (s) tVMA (s) tMA/tVMA

10 93511 6485 4,42 ± 0.04 2,38 ± 0.02 1,86
11 44292 2702 0,83 ± 0.01 0,61 ± 0.00 1,36

5 12 13495 805 0,19 ± 0.00 0,18 ± 0.00 1,05
13 2834 155 0,13 ± 0.00 0,12 ± 0.00 1,03
14 304 19 0,12 ± 0.00 0,12 ± 0.00 1,01

Geo. Mean 1.22

13 870069 25554 252,67 ± 0.75 70,97 ± 0.22 3,56
14 304361 8170 32,13 ± 0.39 12,24 ± 0.07 2,63

6 15 72792 1876 5,80 ± 0.04 5,04 ± 0.05 1,15
16 10648 281 4,56 ± 0.05 4,57 ± 0.04 1,00
17 832 26 4,52 ± 0.04 4,56 ± 0.05 1,00

Geo. Mean 1.60

16 6439087 82614 6853.59 ± 10.77 1784.97 ± 2.96 3.84
17 1749225 21198 669.61 ± 0.53 287.60 ± 1.13 2.33

7 18 324272 3906 186.45 ± 0.55 174.31 ± 0.95 1.07
19 36512 469 170.31 ± 1.34 169.85 ± 0.36 1.00
20 2176 34 171.71 ± 1.55 169.54 ± 0.40 1.01

Geo. Mean 1.58

Full Geo. Mean 1.45

for MA and VMA are spent in this step, respectively. Currently, the complexity of this step is
quadratic. However, it may be improved using multidimensional divide-and-conquer approaches
such as the one proposed by Bentley [1] which we aim to investigate in our future works.

5 Conclusion

The d-MP and d-MC have been very attractive problems in recent decades as the reliability
of multistate flow networks can be computed indirectly by using the d-MPs or d-MC s. In this
work, focusing on the d-MP problem, a vectorization algorithm was proposed based on the available
regular (non-vectorization) algorithms in the literature. We first improved the regular version of the
algorithm so that no duplicate candidate is produced and then enhanced its practical efficiency via
vectorization. Three known benchmarks were employed to generate the numerical results in which
our proposed vectorization algorithm outperformed the others considerably. For future works, we
plan to improve candidates’ checking process, use longer vector registers, and use parallelization
techniques.
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